A laboratory investigation of light scattering from representative components of mineral dust aerosol at a wavelength of 550 nm

To test the applicability of Mie theory in climate models and remote sensing data retrievals, we have studied the scattering phase function and linear polarization of representative mineral dust aerosol components at a wavelength of 550 nm. The mineral components investigated include the silicate cl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2008-04, Vol.113 (D8), p.np-n/a
Hauptverfasser: Curtis, Daniel B., Meland, Brian, Aycibin, Murat, Arnold, Nathan P., Grassian, Vicki H., Young, Mark A., Kleiber, Paul D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D8
container_start_page np
container_title Journal of Geophysical Research: Atmospheres
container_volume 113
creator Curtis, Daniel B.
Meland, Brian
Aycibin, Murat
Arnold, Nathan P.
Grassian, Vicki H.
Young, Mark A.
Kleiber, Paul D.
description To test the applicability of Mie theory in climate models and remote sensing data retrievals, we have studied the scattering phase function and linear polarization of representative mineral dust aerosol components at a wavelength of 550 nm. The mineral components investigated include the silicate clays, kaolinite, illite, and montmorillonite, and non‐clay minerals, quartz, calcite, gypsum, and hematite, as well as Arizona road dust. In each case the aerosol size distribution was simultaneously monitored with an aerodynamic particle sizer. Particle diameters in this study fall in the accumulation mode size range characteristic of long‐range transport aerosols. Our results show significant discrepancies between the experimental and Mie theory phase functions. The model shortcomings are due to particle shape effects for these non‐spherical mineral dust particles. We find intriguing differences in the scattering between the silicate clay and non‐clay components of mineral dust aerosol in this size range. For the non‐clay minerals the most significant errors are found at large scattering angles where Mie theory substantially overestimates the backscattering signal. For the silicate clay minerals, there is more variability in the comparison to Mie theory. These findings have important consequences for the radiative forcing component of global climate models and remote sensing measurements that rely on Mie theory to characterize atmospheric dust. We also present experimentally based synthetic phase functions at 550 nm, for both silicate clay and non‐clay mineral dust aerosols in the size parameter range X = 2–5, which may be useful for empirical models of the scattering due to particles in the accumulation mode size range.
doi_str_mv 10.1029/2007JD009387
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1888961771</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1888961771</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4410-efaf8d1e0da75334861670e98f4dd2f193dc5d8c8819bdab267545ab866759593</originalsourceid><addsrcrecordid>eNp9kMFuEzEURUeISkRtd_0Ab5BYMNT2jMf2smppIFRFQtBKbKyXmTepwWMH20nJil_HUaqKFd74WTrnyu9W1Rmj7xjl-pxTKhdXlOpGyRfVjDPR1ZxT_rKaUdaqmnIuX1WnKf2g5bSiaymbVX8uiINliJBD3BHrt5iyXUG2wZMwEmdXD5mkHnLGaP2KjDFMJOI6YkKfC7dF0odpHXx5pr0yWY8RHBk2KRPAGFJwBMpIHmGLDv0qP-w5ISjx00l1NIJLePp0H1ffrt9_vfxQ33yef7y8uKmhbRmtcYRRDQzpAFI0Tas61kmKWo3tMPCR6WboxaB6pZheDrDknRStgKXqyqCFbo6rN4fcdQy_NmVJM9nUo3PgMWySYUop3TEpWUHfHtC-_D1FHM062gnizjBq9lWbf6su-OunZCg9uTGC7216djhtWt0JWrjmwD1ah7v_ZprF_MsV2y9erPpg2ZTx97MF8afpZCOFub-dG33_6VrJxXdz1_wFwaacyA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888961771</pqid></control><display><type>article</type><title>A laboratory investigation of light scattering from representative components of mineral dust aerosol at a wavelength of 550 nm</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Alma/SFX Local Collection</source><creator>Curtis, Daniel B. ; Meland, Brian ; Aycibin, Murat ; Arnold, Nathan P. ; Grassian, Vicki H. ; Young, Mark A. ; Kleiber, Paul D.</creator><creatorcontrib>Curtis, Daniel B. ; Meland, Brian ; Aycibin, Murat ; Arnold, Nathan P. ; Grassian, Vicki H. ; Young, Mark A. ; Kleiber, Paul D.</creatorcontrib><description>To test the applicability of Mie theory in climate models and remote sensing data retrievals, we have studied the scattering phase function and linear polarization of representative mineral dust aerosol components at a wavelength of 550 nm. The mineral components investigated include the silicate clays, kaolinite, illite, and montmorillonite, and non‐clay minerals, quartz, calcite, gypsum, and hematite, as well as Arizona road dust. In each case the aerosol size distribution was simultaneously monitored with an aerodynamic particle sizer. Particle diameters in this study fall in the accumulation mode size range characteristic of long‐range transport aerosols. Our results show significant discrepancies between the experimental and Mie theory phase functions. The model shortcomings are due to particle shape effects for these non‐spherical mineral dust particles. We find intriguing differences in the scattering between the silicate clay and non‐clay components of mineral dust aerosol in this size range. For the non‐clay minerals the most significant errors are found at large scattering angles where Mie theory substantially overestimates the backscattering signal. For the silicate clay minerals, there is more variability in the comparison to Mie theory. These findings have important consequences for the radiative forcing component of global climate models and remote sensing measurements that rely on Mie theory to characterize atmospheric dust. We also present experimentally based synthetic phase functions at 550 nm, for both silicate clay and non‐clay mineral dust aerosols in the size parameter range X = 2–5, which may be useful for empirical models of the scattering due to particles in the accumulation mode size range.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2007JD009387</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>aerosols ; Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; light scattering ; Mie theory ; Mineral dust ; radiative transfer ; remote sensing</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2008-04, Vol.113 (D8), p.np-n/a</ispartof><rights>Copyright 2008 by the American Geophysical Union.</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4410-efaf8d1e0da75334861670e98f4dd2f193dc5d8c8819bdab267545ab866759593</citedby><cites>FETCH-LOGICAL-a4410-efaf8d1e0da75334861670e98f4dd2f193dc5d8c8819bdab267545ab866759593</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2007JD009387$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2007JD009387$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,778,782,1414,1430,11501,27911,27912,45561,45562,46396,46455,46820,46879</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20349650$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Curtis, Daniel B.</creatorcontrib><creatorcontrib>Meland, Brian</creatorcontrib><creatorcontrib>Aycibin, Murat</creatorcontrib><creatorcontrib>Arnold, Nathan P.</creatorcontrib><creatorcontrib>Grassian, Vicki H.</creatorcontrib><creatorcontrib>Young, Mark A.</creatorcontrib><creatorcontrib>Kleiber, Paul D.</creatorcontrib><title>A laboratory investigation of light scattering from representative components of mineral dust aerosol at a wavelength of 550 nm</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>To test the applicability of Mie theory in climate models and remote sensing data retrievals, we have studied the scattering phase function and linear polarization of representative mineral dust aerosol components at a wavelength of 550 nm. The mineral components investigated include the silicate clays, kaolinite, illite, and montmorillonite, and non‐clay minerals, quartz, calcite, gypsum, and hematite, as well as Arizona road dust. In each case the aerosol size distribution was simultaneously monitored with an aerodynamic particle sizer. Particle diameters in this study fall in the accumulation mode size range characteristic of long‐range transport aerosols. Our results show significant discrepancies between the experimental and Mie theory phase functions. The model shortcomings are due to particle shape effects for these non‐spherical mineral dust particles. We find intriguing differences in the scattering between the silicate clay and non‐clay components of mineral dust aerosol in this size range. For the non‐clay minerals the most significant errors are found at large scattering angles where Mie theory substantially overestimates the backscattering signal. For the silicate clay minerals, there is more variability in the comparison to Mie theory. These findings have important consequences for the radiative forcing component of global climate models and remote sensing measurements that rely on Mie theory to characterize atmospheric dust. We also present experimentally based synthetic phase functions at 550 nm, for both silicate clay and non‐clay mineral dust aerosols in the size parameter range X = 2–5, which may be useful for empirical models of the scattering due to particles in the accumulation mode size range.</description><subject>aerosols</subject><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>light scattering</subject><subject>Mie theory</subject><subject>Mineral dust</subject><subject>radiative transfer</subject><subject>remote sensing</subject><issn>0148-0227</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kMFuEzEURUeISkRtd_0Ab5BYMNT2jMf2smppIFRFQtBKbKyXmTepwWMH20nJil_HUaqKFd74WTrnyu9W1Rmj7xjl-pxTKhdXlOpGyRfVjDPR1ZxT_rKaUdaqmnIuX1WnKf2g5bSiaymbVX8uiINliJBD3BHrt5iyXUG2wZMwEmdXD5mkHnLGaP2KjDFMJOI6YkKfC7dF0odpHXx5pr0yWY8RHBk2KRPAGFJwBMpIHmGLDv0qP-w5ISjx00l1NIJLePp0H1ffrt9_vfxQ33yef7y8uKmhbRmtcYRRDQzpAFI0Tas61kmKWo3tMPCR6WboxaB6pZheDrDknRStgKXqyqCFbo6rN4fcdQy_NmVJM9nUo3PgMWySYUop3TEpWUHfHtC-_D1FHM062gnizjBq9lWbf6su-OunZCg9uTGC7216djhtWt0JWrjmwD1ah7v_ZprF_MsV2y9erPpg2ZTx97MF8afpZCOFub-dG33_6VrJxXdz1_wFwaacyA</recordid><startdate>20080427</startdate><enddate>20080427</enddate><creator>Curtis, Daniel B.</creator><creator>Meland, Brian</creator><creator>Aycibin, Murat</creator><creator>Arnold, Nathan P.</creator><creator>Grassian, Vicki H.</creator><creator>Young, Mark A.</creator><creator>Kleiber, Paul D.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20080427</creationdate><title>A laboratory investigation of light scattering from representative components of mineral dust aerosol at a wavelength of 550 nm</title><author>Curtis, Daniel B. ; Meland, Brian ; Aycibin, Murat ; Arnold, Nathan P. ; Grassian, Vicki H. ; Young, Mark A. ; Kleiber, Paul D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4410-efaf8d1e0da75334861670e98f4dd2f193dc5d8c8819bdab267545ab866759593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>aerosols</topic><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>light scattering</topic><topic>Mie theory</topic><topic>Mineral dust</topic><topic>radiative transfer</topic><topic>remote sensing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Curtis, Daniel B.</creatorcontrib><creatorcontrib>Meland, Brian</creatorcontrib><creatorcontrib>Aycibin, Murat</creatorcontrib><creatorcontrib>Arnold, Nathan P.</creatorcontrib><creatorcontrib>Grassian, Vicki H.</creatorcontrib><creatorcontrib>Young, Mark A.</creatorcontrib><creatorcontrib>Kleiber, Paul D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Curtis, Daniel B.</au><au>Meland, Brian</au><au>Aycibin, Murat</au><au>Arnold, Nathan P.</au><au>Grassian, Vicki H.</au><au>Young, Mark A.</au><au>Kleiber, Paul D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A laboratory investigation of light scattering from representative components of mineral dust aerosol at a wavelength of 550 nm</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2008-04-27</date><risdate>2008</risdate><volume>113</volume><issue>D8</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>To test the applicability of Mie theory in climate models and remote sensing data retrievals, we have studied the scattering phase function and linear polarization of representative mineral dust aerosol components at a wavelength of 550 nm. The mineral components investigated include the silicate clays, kaolinite, illite, and montmorillonite, and non‐clay minerals, quartz, calcite, gypsum, and hematite, as well as Arizona road dust. In each case the aerosol size distribution was simultaneously monitored with an aerodynamic particle sizer. Particle diameters in this study fall in the accumulation mode size range characteristic of long‐range transport aerosols. Our results show significant discrepancies between the experimental and Mie theory phase functions. The model shortcomings are due to particle shape effects for these non‐spherical mineral dust particles. We find intriguing differences in the scattering between the silicate clay and non‐clay components of mineral dust aerosol in this size range. For the non‐clay minerals the most significant errors are found at large scattering angles where Mie theory substantially overestimates the backscattering signal. For the silicate clay minerals, there is more variability in the comparison to Mie theory. These findings have important consequences for the radiative forcing component of global climate models and remote sensing measurements that rely on Mie theory to characterize atmospheric dust. We also present experimentally based synthetic phase functions at 550 nm, for both silicate clay and non‐clay mineral dust aerosols in the size parameter range X = 2–5, which may be useful for empirical models of the scattering due to particles in the accumulation mode size range.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2007JD009387</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2008-04, Vol.113 (D8), p.np-n/a
issn 0148-0227
2156-2202
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1888961771
source Wiley Online Library Journals Frontfile Complete; Wiley Free Content; Wiley-Blackwell AGU Digital Library; Alma/SFX Local Collection
subjects aerosols
Earth sciences
Earth, ocean, space
Exact sciences and technology
light scattering
Mie theory
Mineral dust
radiative transfer
remote sensing
title A laboratory investigation of light scattering from representative components of mineral dust aerosol at a wavelength of 550 nm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T19%3A00%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20laboratory%20investigation%20of%20light%20scattering%20from%20representative%20components%20of%20mineral%20dust%20aerosol%20at%20a%20wavelength%20of%20550%20nm&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Curtis,%20Daniel%20B.&rft.date=2008-04-27&rft.volume=113&rft.issue=D8&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2007JD009387&rft_dat=%3Cproquest_cross%3E1888961771%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888961771&rft_id=info:pmid/&rfr_iscdi=true