Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds

Recent experimental evidence indicates that heterogeneous chemical reactions play an important role in the gas‐particle partitioning of organic compounds, contributing to the formation and growth of secondary organic aerosol in the atmosphere. Here we present laboratory chamber studies of the reacti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Geophysical Research: Atmospheres 2005-12, Vol.110 (D23), p.D23207.1-n/a
Hauptverfasser: Kroll, Jesse H., Ng, Nga L., Murphy, Shane M., Varutbangkul, Varuntida, Flagan, Richard C., Seinfeld, John H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue D23
container_start_page D23207.1
container_title Journal of Geophysical Research: Atmospheres
container_volume 110
creator Kroll, Jesse H.
Ng, Nga L.
Murphy, Shane M.
Varutbangkul, Varuntida
Flagan, Richard C.
Seinfeld, John H.
description Recent experimental evidence indicates that heterogeneous chemical reactions play an important role in the gas‐particle partitioning of organic compounds, contributing to the formation and growth of secondary organic aerosol in the atmosphere. Here we present laboratory chamber studies of the reactive uptake of simple carbonyl species (formaldehyde, octanal, trans,trans‐2,4‐hexadienal, glyoxal, methylglyoxal, 2,3‐butanedione, 2,4‐pentanedione, glutaraldehyde, and hydroxyacetone) onto inorganic aerosol. Gas‐phase organic compounds and aqueous seed particles (ammonium sulfate or mixed ammonium sulfate/sulfuric acid) are introduced into the chamber, and particle growth and composition are monitored using a differential mobility analyzer and an Aerodyne Aerosol Mass Spectrometer. No growth is observed for most carbonyls studied, even at high concentrations (500 ppb to 5 ppm), in contrast with the results from previous studies. The single exception is glyoxal (CHOCHO), which partitions into the aqueous aerosol much more efficiently than its Henry's law constant would predict. No major enhancement in particle growth is observed for the acidic seed, suggesting that the large glyoxal uptake is not a result of particle acidity but rather of ionic strength of the seed. This increased partitioning into the particle phase still cannot explain the high levels of glyoxal measured in ambient aerosol, indicating that additional (possibly irreversible) pathways of glyoxal uptake may be important in the atmosphere.
doi_str_mv 10.1029/2005JD006004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1888960657</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1888960657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4840-702e16a32f59fa505d49ac92e23b611208289c902a2de47375839c7e999b1ce53</originalsourceid><addsrcrecordid>eNp9kcFO3DAQhi3USqyAWx_AF6QeCIwdO46P1dIuRZRKQFuJi-U4EzAkcWonpfv2zXZRy4m5zOX7fumfIeQdg2MGXJ9wAHl-ClAAiB2y4EwWGefA35AFMFFmwLnaJQcpPcA8QhYC2IK45b3tKow0jVPtMdHQ0IQu9LWNaxrine29oxZjSKGldzE8jfe0WtOI1o3-F9JpGO0j_tV8N7RInY1V6NctdaEbwtTXaZ-8bWyb8OB575Fvnz7eLM-yi6-rz8sPF5kTpYBMAUdW2Jw3UjdWgqyFtk5z5HlVMMah5KV2GrjlNQqVK1nm2inUWlfMocz3yPtt7hDDzwnTaDqfHLat7TFMybCyLHUBhVQzerRF3VwsRWzMEH03VzYMzOac5uU5Z_zwOdkmZ9sm2t759N9RAqQSGy7fck--xfWrmeZ8dXXK5gfBbGVby6cRf_-zbHw0xaam-XG5Mrff1eUVfFma6_wPcsGR5w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1888960657</pqid></control><display><type>article</type><title>Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds</title><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><source>Wiley Online Library AGU Free Content</source><source>Alma/SFX Local Collection</source><creator>Kroll, Jesse H. ; Ng, Nga L. ; Murphy, Shane M. ; Varutbangkul, Varuntida ; Flagan, Richard C. ; Seinfeld, John H.</creator><creatorcontrib>Kroll, Jesse H. ; Ng, Nga L. ; Murphy, Shane M. ; Varutbangkul, Varuntida ; Flagan, Richard C. ; Seinfeld, John H.</creatorcontrib><description>Recent experimental evidence indicates that heterogeneous chemical reactions play an important role in the gas‐particle partitioning of organic compounds, contributing to the formation and growth of secondary organic aerosol in the atmosphere. Here we present laboratory chamber studies of the reactive uptake of simple carbonyl species (formaldehyde, octanal, trans,trans‐2,4‐hexadienal, glyoxal, methylglyoxal, 2,3‐butanedione, 2,4‐pentanedione, glutaraldehyde, and hydroxyacetone) onto inorganic aerosol. Gas‐phase organic compounds and aqueous seed particles (ammonium sulfate or mixed ammonium sulfate/sulfuric acid) are introduced into the chamber, and particle growth and composition are monitored using a differential mobility analyzer and an Aerodyne Aerosol Mass Spectrometer. No growth is observed for most carbonyls studied, even at high concentrations (500 ppb to 5 ppm), in contrast with the results from previous studies. The single exception is glyoxal (CHOCHO), which partitions into the aqueous aerosol much more efficiently than its Henry's law constant would predict. No major enhancement in particle growth is observed for the acidic seed, suggesting that the large glyoxal uptake is not a result of particle acidity but rather of ionic strength of the seed. This increased partitioning into the particle phase still cannot explain the high levels of glyoxal measured in ambient aerosol, indicating that additional (possibly irreversible) pathways of glyoxal uptake may be important in the atmosphere.</description><identifier>ISSN: 0148-0227</identifier><identifier>EISSN: 2156-2202</identifier><identifier>EISSN: 2169-8996</identifier><identifier>DOI: 10.1029/2005JD006004</identifier><language>eng</language><publisher>Washington, DC: Blackwell Publishing Ltd</publisher><subject>Earth sciences ; Earth, ocean, space ; Exact sciences and technology ; glyoxal ; heterogeneous reactions ; secondary organic aerosol</subject><ispartof>Journal of Geophysical Research: Atmospheres, 2005-12, Vol.110 (D23), p.D23207.1-n/a</ispartof><rights>Copyright 2005 by the American Geophysical Union.</rights><rights>2006 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4840-702e16a32f59fa505d49ac92e23b611208289c902a2de47375839c7e999b1ce53</citedby><cites>FETCH-LOGICAL-c4840-702e16a32f59fa505d49ac92e23b611208289c902a2de47375839c7e999b1ce53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2005JD006004$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2005JD006004$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17405744$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Kroll, Jesse H.</creatorcontrib><creatorcontrib>Ng, Nga L.</creatorcontrib><creatorcontrib>Murphy, Shane M.</creatorcontrib><creatorcontrib>Varutbangkul, Varuntida</creatorcontrib><creatorcontrib>Flagan, Richard C.</creatorcontrib><creatorcontrib>Seinfeld, John H.</creatorcontrib><title>Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds</title><title>Journal of Geophysical Research: Atmospheres</title><addtitle>J. Geophys. Res</addtitle><description>Recent experimental evidence indicates that heterogeneous chemical reactions play an important role in the gas‐particle partitioning of organic compounds, contributing to the formation and growth of secondary organic aerosol in the atmosphere. Here we present laboratory chamber studies of the reactive uptake of simple carbonyl species (formaldehyde, octanal, trans,trans‐2,4‐hexadienal, glyoxal, methylglyoxal, 2,3‐butanedione, 2,4‐pentanedione, glutaraldehyde, and hydroxyacetone) onto inorganic aerosol. Gas‐phase organic compounds and aqueous seed particles (ammonium sulfate or mixed ammonium sulfate/sulfuric acid) are introduced into the chamber, and particle growth and composition are monitored using a differential mobility analyzer and an Aerodyne Aerosol Mass Spectrometer. No growth is observed for most carbonyls studied, even at high concentrations (500 ppb to 5 ppm), in contrast with the results from previous studies. The single exception is glyoxal (CHOCHO), which partitions into the aqueous aerosol much more efficiently than its Henry's law constant would predict. No major enhancement in particle growth is observed for the acidic seed, suggesting that the large glyoxal uptake is not a result of particle acidity but rather of ionic strength of the seed. This increased partitioning into the particle phase still cannot explain the high levels of glyoxal measured in ambient aerosol, indicating that additional (possibly irreversible) pathways of glyoxal uptake may be important in the atmosphere.</description><subject>Earth sciences</subject><subject>Earth, ocean, space</subject><subject>Exact sciences and technology</subject><subject>glyoxal</subject><subject>heterogeneous reactions</subject><subject>secondary organic aerosol</subject><issn>0148-0227</issn><issn>2156-2202</issn><issn>2169-8996</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><recordid>eNp9kcFO3DAQhi3USqyAWx_AF6QeCIwdO46P1dIuRZRKQFuJi-U4EzAkcWonpfv2zXZRy4m5zOX7fumfIeQdg2MGXJ9wAHl-ClAAiB2y4EwWGefA35AFMFFmwLnaJQcpPcA8QhYC2IK45b3tKow0jVPtMdHQ0IQu9LWNaxrine29oxZjSKGldzE8jfe0WtOI1o3-F9JpGO0j_tV8N7RInY1V6NctdaEbwtTXaZ-8bWyb8OB575Fvnz7eLM-yi6-rz8sPF5kTpYBMAUdW2Jw3UjdWgqyFtk5z5HlVMMah5KV2GrjlNQqVK1nm2inUWlfMocz3yPtt7hDDzwnTaDqfHLat7TFMybCyLHUBhVQzerRF3VwsRWzMEH03VzYMzOac5uU5Z_zwOdkmZ9sm2t759N9RAqQSGy7fck--xfWrmeZ8dXXK5gfBbGVby6cRf_-zbHw0xaam-XG5Mrff1eUVfFma6_wPcsGR5w</recordid><startdate>20051216</startdate><enddate>20051216</enddate><creator>Kroll, Jesse H.</creator><creator>Ng, Nga L.</creator><creator>Murphy, Shane M.</creator><creator>Varutbangkul, Varuntida</creator><creator>Flagan, Richard C.</creator><creator>Seinfeld, John H.</creator><general>Blackwell Publishing Ltd</general><general>American Geophysical Union</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>L.G</scope></search><sort><creationdate>20051216</creationdate><title>Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds</title><author>Kroll, Jesse H. ; Ng, Nga L. ; Murphy, Shane M. ; Varutbangkul, Varuntida ; Flagan, Richard C. ; Seinfeld, John H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4840-702e16a32f59fa505d49ac92e23b611208289c902a2de47375839c7e999b1ce53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Earth sciences</topic><topic>Earth, ocean, space</topic><topic>Exact sciences and technology</topic><topic>glyoxal</topic><topic>heterogeneous reactions</topic><topic>secondary organic aerosol</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kroll, Jesse H.</creatorcontrib><creatorcontrib>Ng, Nga L.</creatorcontrib><creatorcontrib>Murphy, Shane M.</creatorcontrib><creatorcontrib>Varutbangkul, Varuntida</creatorcontrib><creatorcontrib>Flagan, Richard C.</creatorcontrib><creatorcontrib>Seinfeld, John H.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Journal of Geophysical Research: Atmospheres</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kroll, Jesse H.</au><au>Ng, Nga L.</au><au>Murphy, Shane M.</au><au>Varutbangkul, Varuntida</au><au>Flagan, Richard C.</au><au>Seinfeld, John H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds</atitle><jtitle>Journal of Geophysical Research: Atmospheres</jtitle><addtitle>J. Geophys. Res</addtitle><date>2005-12-16</date><risdate>2005</risdate><volume>110</volume><issue>D23</issue><spage>D23207.1</spage><epage>n/a</epage><pages>D23207.1-n/a</pages><issn>0148-0227</issn><eissn>2156-2202</eissn><eissn>2169-8996</eissn><abstract>Recent experimental evidence indicates that heterogeneous chemical reactions play an important role in the gas‐particle partitioning of organic compounds, contributing to the formation and growth of secondary organic aerosol in the atmosphere. Here we present laboratory chamber studies of the reactive uptake of simple carbonyl species (formaldehyde, octanal, trans,trans‐2,4‐hexadienal, glyoxal, methylglyoxal, 2,3‐butanedione, 2,4‐pentanedione, glutaraldehyde, and hydroxyacetone) onto inorganic aerosol. Gas‐phase organic compounds and aqueous seed particles (ammonium sulfate or mixed ammonium sulfate/sulfuric acid) are introduced into the chamber, and particle growth and composition are monitored using a differential mobility analyzer and an Aerodyne Aerosol Mass Spectrometer. No growth is observed for most carbonyls studied, even at high concentrations (500 ppb to 5 ppm), in contrast with the results from previous studies. The single exception is glyoxal (CHOCHO), which partitions into the aqueous aerosol much more efficiently than its Henry's law constant would predict. No major enhancement in particle growth is observed for the acidic seed, suggesting that the large glyoxal uptake is not a result of particle acidity but rather of ionic strength of the seed. This increased partitioning into the particle phase still cannot explain the high levels of glyoxal measured in ambient aerosol, indicating that additional (possibly irreversible) pathways of glyoxal uptake may be important in the atmosphere.</abstract><cop>Washington, DC</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1029/2005JD006004</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0148-0227
ispartof Journal of Geophysical Research: Atmospheres, 2005-12, Vol.110 (D23), p.D23207.1-n/a
issn 0148-0227
2156-2202
2169-8996
language eng
recordid cdi_proquest_miscellaneous_1888960657
source Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content; Wiley Online Library AGU Free Content; Alma/SFX Local Collection
subjects Earth sciences
Earth, ocean, space
Exact sciences and technology
glyoxal
heterogeneous reactions
secondary organic aerosol
title Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T15%3A07%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chamber%20studies%20of%20secondary%20organic%20aerosol%20growth%20by%20reactive%20uptake%20of%20simple%20carbonyl%20compounds&rft.jtitle=Journal%20of%20Geophysical%20Research:%20Atmospheres&rft.au=Kroll,%20Jesse%20H.&rft.date=2005-12-16&rft.volume=110&rft.issue=D23&rft.spage=D23207.1&rft.epage=n/a&rft.pages=D23207.1-n/a&rft.issn=0148-0227&rft.eissn=2156-2202&rft_id=info:doi/10.1029/2005JD006004&rft_dat=%3Cproquest_cross%3E1888960657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1888960657&rft_id=info:pmid/&rfr_iscdi=true