Estimating Occupancy Probability of Moose Using Hunter Survey Data

Monitoring rare species can be difficult, especially across large spatial extents, making conventional methods of population monitoring costly and logistically challenging. Citizen science has the potential to produce observational data across large areas that can be used to monitor wildlife distrib...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of wildlife management 2017-04, Vol.81 (3), p.521-534
Hauptverfasser: CRUM, NATHAN J., FULLER, ANGELA K., SUTHERLAND, CHRISTOPHER S., COOCH, EVAN G., HURST, JEREMY
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 534
container_issue 3
container_start_page 521
container_title The Journal of wildlife management
container_volume 81
creator CRUM, NATHAN J.
FULLER, ANGELA K.
SUTHERLAND, CHRISTOPHER S.
COOCH, EVAN G.
HURST, JEREMY
description Monitoring rare species can be difficult, especially across large spatial extents, making conventional methods of population monitoring costly and logistically challenging. Citizen science has the potential to produce observational data across large areas that can be used to monitor wildlife distributions using occupancy models. We used citizen science (i.e., hunter surveys) to facilitate monitoring of moose (Alces alces) populations, an especially important endeavor because of their recent apparent declines in the northeastern and upper midwestern regions of the United States. To better understand patterns of occurrence of moose in New York, we used data collected through an annual survey of approximately 11,000 hunters between 2012 and 2014 that recorded detection–non-detection data of moose and other species. We estimated patterns of occurrence of moose in relation to land cover characteristics, climate effects, and interspecific interactions using occupancy models to analyze spatially referenced moose observations. Coniferous and deciduous forest with low prevalence of white-tailed deer (Odocoileus virginianus) had the highest probability of moose occurrence. This study highlights the potential of data collected using citizen science for understanding the spatial distribution of low-density species across large spatial extents and providing key information regarding where and when future research and management activities should be focused.
doi_str_mv 10.1002/jwmg.21207
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1888955023</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26607315</jstor_id><sourcerecordid>26607315</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4207-73ab2043e0887c4101f40394a8274f0124e73491ea6bf8fc710ce458cbbb33a23</originalsourceid><addsrcrecordid>eNp90MFLwzAUBvAgCs7pxbtQ8CJCZ16SNulR59yUjQk69FbSkI6OrplJ6-h_b2bVg4ed3uH9vsfjQ-gc8AAwJjer7Xo5IEAwP0A9SCgPiQB-iHp-ScKIwfsxOnFuhTEFEHEP3Y1cXaxlXVTLYK5Us5GVaoNnazKZFWVRt4HJg5kxTgcLt0OTpqq1DV4a-6nb4F7W8hQd5bJ0-uxn9tHiYfQ6nITT-fhxeDsNFfP_hJzKjGBGNRaCKwYYcoZpwqQgnOUYCNOcsgS0jLNc5IoDVppFQmVZRqkktI-uursbaz4a7ep0XTily1JW2jQuBSFEEkWYUE8v_9GVaWzlv_MqiTAlCYH9SgCLgMTcq-tOKWucszpPN9Y3ZtsUcLorPd2Vnn6X7jF0eFuUut0j06e32fg3c9FlVq429i9D4tgvIaJfzzyK4w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1881451267</pqid></control><display><type>article</type><title>Estimating Occupancy Probability of Moose Using Hunter Survey Data</title><source>Access via Wiley Online Library</source><source>JSTOR Archive Collection A-Z Listing</source><creator>CRUM, NATHAN J. ; FULLER, ANGELA K. ; SUTHERLAND, CHRISTOPHER S. ; COOCH, EVAN G. ; HURST, JEREMY</creator><creatorcontrib>CRUM, NATHAN J. ; FULLER, ANGELA K. ; SUTHERLAND, CHRISTOPHER S. ; COOCH, EVAN G. ; HURST, JEREMY</creatorcontrib><description>Monitoring rare species can be difficult, especially across large spatial extents, making conventional methods of population monitoring costly and logistically challenging. Citizen science has the potential to produce observational data across large areas that can be used to monitor wildlife distributions using occupancy models. We used citizen science (i.e., hunter surveys) to facilitate monitoring of moose (Alces alces) populations, an especially important endeavor because of their recent apparent declines in the northeastern and upper midwestern regions of the United States. To better understand patterns of occurrence of moose in New York, we used data collected through an annual survey of approximately 11,000 hunters between 2012 and 2014 that recorded detection–non-detection data of moose and other species. We estimated patterns of occurrence of moose in relation to land cover characteristics, climate effects, and interspecific interactions using occupancy models to analyze spatially referenced moose observations. Coniferous and deciduous forest with low prevalence of white-tailed deer (Odocoileus virginianus) had the highest probability of moose occurrence. This study highlights the potential of data collected using citizen science for understanding the spatial distribution of low-density species across large spatial extents and providing key information regarding where and when future research and management activities should be focused.</description><identifier>ISSN: 0022-541X</identifier><identifier>EISSN: 1937-2817</identifier><identifier>DOI: 10.1002/jwmg.21207</identifier><identifier>CODEN: JWMAA9</identifier><language>eng</language><publisher>Bethesda: Wiley</publisher><subject>Alces alces ; citizen science ; Climate effects ; Climate models ; Coniferous forests ; Crowdsourcing ; Deciduous forests ; Deer ; distribution ; Endangered &amp; extinct species ; Forests ; Habitats ; Hunting ; Interspecific ; Land cover ; Monitoring ; Moose ; New York ; occupancy ; Odocoileus virginianus ; Polls &amp; surveys ; Quantitative Approaches ; Rare species ; Spatial distribution ; Wildlife ; Wildlife management</subject><ispartof>The Journal of wildlife management, 2017-04, Vol.81 (3), p.521-534</ispartof><rights>2016 The Wildlife Society</rights><rights>The Wildlife Society, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4207-73ab2043e0887c4101f40394a8274f0124e73491ea6bf8fc710ce458cbbb33a23</citedby><cites>FETCH-LOGICAL-c4207-73ab2043e0887c4101f40394a8274f0124e73491ea6bf8fc710ce458cbbb33a23</cites><orcidid>0000-0002-9247-7468</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26607315$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26607315$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,1418,27929,27930,45579,45580,58022,58255</link.rule.ids></links><search><creatorcontrib>CRUM, NATHAN J.</creatorcontrib><creatorcontrib>FULLER, ANGELA K.</creatorcontrib><creatorcontrib>SUTHERLAND, CHRISTOPHER S.</creatorcontrib><creatorcontrib>COOCH, EVAN G.</creatorcontrib><creatorcontrib>HURST, JEREMY</creatorcontrib><title>Estimating Occupancy Probability of Moose Using Hunter Survey Data</title><title>The Journal of wildlife management</title><description>Monitoring rare species can be difficult, especially across large spatial extents, making conventional methods of population monitoring costly and logistically challenging. Citizen science has the potential to produce observational data across large areas that can be used to monitor wildlife distributions using occupancy models. We used citizen science (i.e., hunter surveys) to facilitate monitoring of moose (Alces alces) populations, an especially important endeavor because of their recent apparent declines in the northeastern and upper midwestern regions of the United States. To better understand patterns of occurrence of moose in New York, we used data collected through an annual survey of approximately 11,000 hunters between 2012 and 2014 that recorded detection–non-detection data of moose and other species. We estimated patterns of occurrence of moose in relation to land cover characteristics, climate effects, and interspecific interactions using occupancy models to analyze spatially referenced moose observations. Coniferous and deciduous forest with low prevalence of white-tailed deer (Odocoileus virginianus) had the highest probability of moose occurrence. This study highlights the potential of data collected using citizen science for understanding the spatial distribution of low-density species across large spatial extents and providing key information regarding where and when future research and management activities should be focused.</description><subject>Alces alces</subject><subject>citizen science</subject><subject>Climate effects</subject><subject>Climate models</subject><subject>Coniferous forests</subject><subject>Crowdsourcing</subject><subject>Deciduous forests</subject><subject>Deer</subject><subject>distribution</subject><subject>Endangered &amp; extinct species</subject><subject>Forests</subject><subject>Habitats</subject><subject>Hunting</subject><subject>Interspecific</subject><subject>Land cover</subject><subject>Monitoring</subject><subject>Moose</subject><subject>New York</subject><subject>occupancy</subject><subject>Odocoileus virginianus</subject><subject>Polls &amp; surveys</subject><subject>Quantitative Approaches</subject><subject>Rare species</subject><subject>Spatial distribution</subject><subject>Wildlife</subject><subject>Wildlife management</subject><issn>0022-541X</issn><issn>1937-2817</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp90MFLwzAUBvAgCs7pxbtQ8CJCZ16SNulR59yUjQk69FbSkI6OrplJ6-h_b2bVg4ed3uH9vsfjQ-gc8AAwJjer7Xo5IEAwP0A9SCgPiQB-iHp-ScKIwfsxOnFuhTEFEHEP3Y1cXaxlXVTLYK5Us5GVaoNnazKZFWVRt4HJg5kxTgcLt0OTpqq1DV4a-6nb4F7W8hQd5bJ0-uxn9tHiYfQ6nITT-fhxeDsNFfP_hJzKjGBGNRaCKwYYcoZpwqQgnOUYCNOcsgS0jLNc5IoDVppFQmVZRqkktI-uursbaz4a7ep0XTily1JW2jQuBSFEEkWYUE8v_9GVaWzlv_MqiTAlCYH9SgCLgMTcq-tOKWucszpPN9Y3ZtsUcLorPd2Vnn6X7jF0eFuUut0j06e32fg3c9FlVq429i9D4tgvIaJfzzyK4w</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>CRUM, NATHAN J.</creator><creator>FULLER, ANGELA K.</creator><creator>SUTHERLAND, CHRISTOPHER S.</creator><creator>COOCH, EVAN G.</creator><creator>HURST, JEREMY</creator><general>Wiley</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7ST</scope><scope>7T7</scope><scope>7U6</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><orcidid>https://orcid.org/0000-0002-9247-7468</orcidid></search><sort><creationdate>20170401</creationdate><title>Estimating Occupancy Probability of Moose Using Hunter Survey Data</title><author>CRUM, NATHAN J. ; FULLER, ANGELA K. ; SUTHERLAND, CHRISTOPHER S. ; COOCH, EVAN G. ; HURST, JEREMY</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4207-73ab2043e0887c4101f40394a8274f0124e73491ea6bf8fc710ce458cbbb33a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alces alces</topic><topic>citizen science</topic><topic>Climate effects</topic><topic>Climate models</topic><topic>Coniferous forests</topic><topic>Crowdsourcing</topic><topic>Deciduous forests</topic><topic>Deer</topic><topic>distribution</topic><topic>Endangered &amp; extinct species</topic><topic>Forests</topic><topic>Habitats</topic><topic>Hunting</topic><topic>Interspecific</topic><topic>Land cover</topic><topic>Monitoring</topic><topic>Moose</topic><topic>New York</topic><topic>occupancy</topic><topic>Odocoileus virginianus</topic><topic>Polls &amp; surveys</topic><topic>Quantitative Approaches</topic><topic>Rare species</topic><topic>Spatial distribution</topic><topic>Wildlife</topic><topic>Wildlife management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>CRUM, NATHAN J.</creatorcontrib><creatorcontrib>FULLER, ANGELA K.</creatorcontrib><creatorcontrib>SUTHERLAND, CHRISTOPHER S.</creatorcontrib><creatorcontrib>COOCH, EVAN G.</creatorcontrib><creatorcontrib>HURST, JEREMY</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Sustainability Science Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>The Journal of wildlife management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>CRUM, NATHAN J.</au><au>FULLER, ANGELA K.</au><au>SUTHERLAND, CHRISTOPHER S.</au><au>COOCH, EVAN G.</au><au>HURST, JEREMY</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating Occupancy Probability of Moose Using Hunter Survey Data</atitle><jtitle>The Journal of wildlife management</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>81</volume><issue>3</issue><spage>521</spage><epage>534</epage><pages>521-534</pages><issn>0022-541X</issn><eissn>1937-2817</eissn><coden>JWMAA9</coden><abstract>Monitoring rare species can be difficult, especially across large spatial extents, making conventional methods of population monitoring costly and logistically challenging. Citizen science has the potential to produce observational data across large areas that can be used to monitor wildlife distributions using occupancy models. We used citizen science (i.e., hunter surveys) to facilitate monitoring of moose (Alces alces) populations, an especially important endeavor because of their recent apparent declines in the northeastern and upper midwestern regions of the United States. To better understand patterns of occurrence of moose in New York, we used data collected through an annual survey of approximately 11,000 hunters between 2012 and 2014 that recorded detection–non-detection data of moose and other species. We estimated patterns of occurrence of moose in relation to land cover characteristics, climate effects, and interspecific interactions using occupancy models to analyze spatially referenced moose observations. Coniferous and deciduous forest with low prevalence of white-tailed deer (Odocoileus virginianus) had the highest probability of moose occurrence. This study highlights the potential of data collected using citizen science for understanding the spatial distribution of low-density species across large spatial extents and providing key information regarding where and when future research and management activities should be focused.</abstract><cop>Bethesda</cop><pub>Wiley</pub><doi>10.1002/jwmg.21207</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9247-7468</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-541X
ispartof The Journal of wildlife management, 2017-04, Vol.81 (3), p.521-534
issn 0022-541X
1937-2817
language eng
recordid cdi_proquest_miscellaneous_1888955023
source Access via Wiley Online Library; JSTOR Archive Collection A-Z Listing
subjects Alces alces
citizen science
Climate effects
Climate models
Coniferous forests
Crowdsourcing
Deciduous forests
Deer
distribution
Endangered & extinct species
Forests
Habitats
Hunting
Interspecific
Land cover
Monitoring
Moose
New York
occupancy
Odocoileus virginianus
Polls & surveys
Quantitative Approaches
Rare species
Spatial distribution
Wildlife
Wildlife management
title Estimating Occupancy Probability of Moose Using Hunter Survey Data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T13%3A08%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20Occupancy%20Probability%20of%20Moose%20Using%20Hunter%20Survey%20Data&rft.jtitle=The%20Journal%20of%20wildlife%20management&rft.au=CRUM,%20NATHAN%20J.&rft.date=2017-04-01&rft.volume=81&rft.issue=3&rft.spage=521&rft.epage=534&rft.pages=521-534&rft.issn=0022-541X&rft.eissn=1937-2817&rft.coden=JWMAA9&rft_id=info:doi/10.1002/jwmg.21207&rft_dat=%3Cjstor_proqu%3E26607315%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1881451267&rft_id=info:pmid/&rft_jstor_id=26607315&rfr_iscdi=true