Complete Genome Sequence and Analysis of Wolinella succinogenes
To understand the origin and emergence of pathogenic bacteria, knowledge of the genetic inventory from their nonpathogenic relatives is a prerequisite. Therefore, the 2.11-megabase genome sequence of Wolinella succinogenes, which is closely related to the pathogenic bacteria Helicobacter pylori and...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2003-09, Vol.100 (20), p.11690-11695 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11695 |
---|---|
container_issue | 20 |
container_start_page | 11690 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 100 |
creator | Baar, Claudia Eppinger, Mark Raddatz, Guenter Simon, Jörg Lanz, Christa Klimmek, Oliver Nandakumar, Ramkumar Gross, Roland Rosinus, Andrea Keller, Heike Jagtap, Pratik Linke, Burkhard Meyer, Folker Lederer, Hermann Schuster, Stephan C. |
description | To understand the origin and emergence of pathogenic bacteria, knowledge of the genetic inventory from their nonpathogenic relatives is a prerequisite. Therefore, the 2.11-megabase genome sequence of Wolinella succinogenes, which is closely related to the pathogenic bacteria Helicobacter pylori and Campylobacter jejuni, was determined. Despite being considered nonpathogenic to its bovine host, W. succinogenes holds an extensive repertoire of genes homologous to known bacterial virulence factors. Many of these genes have been acquired by lateral gene transfer, because part of the virulence plasmid pVir and an N-linked glycosylation gene cluster were found to be syntenic between C. jejuni and genomic islands of W. succinogenes. In contrast to other host-adapted bacteria, W. succinogenes does harbor the highest density of bacterial sensor kinases found in any bacterial genome to date, together with an elaborate signaling circuitry of the GGDEF family of proteins. Because the analysis of the W. succinogenes genome also revealed genes related to soil- and plant-associated bacteria such as the nif genes, W. succinogenes may represent a member of the epsilon proteobacteria with a life cycle outside its host. |
doi_str_mv | 10.1073/pnas.1932838100 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_18884286</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3147853</jstor_id><sourcerecordid>3147853</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-56a31d9c879822f1a1913a9a07728c18bc49b5a012201cd3c795f18e2a6c3b393</originalsourceid><addsrcrecordid>eNqFkcFLHDEUxoO06Nb27KWUwUPBw-h7yWSSHEqRpVVB8FClx5DNZnSWTLKdzEj975thF1d78ZRAft_38r2PkCOEUwTBztbBpFNUjEomEWCPzBAUlnWl4B2ZAVBRyopWB-RDSisAUFzCPjnAiuc7yBn5Po_d2rvBFRcuxM4Vv9yf0QXrChOWxXkw_im1qYhN8Tv6NjjvTZFGa9sQ711w6SN53xif3KfteUjufv64nV-W1zcXV_Pz69JyWg8lrw3DpbJSKElpgwYVMqMMCEGlRbmwlVpwA0gpoF0yKxRvUDpqassWTLFD8m3jux4XnVtaF4beeL3u2870TzqaVr9-Ce2Dvo-PmoKUOOm_bvV9zAHToLs22SlOcHFMWnDBgPL6TRClzBuVE3j8H7iKY58XlvJMrICqmmXobAPZPqbUu-b5xwh6alBPDepdg1nx5WXQHb-tLAPFFpiUOzvIYzVirSaPkzcQ3YzeD-7vkNnPG3aVhtg_wwwrITlj_wDAJLgW</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201402963</pqid></control><display><type>article</type><title>Complete Genome Sequence and Analysis of Wolinella succinogenes</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Baar, Claudia ; Eppinger, Mark ; Raddatz, Guenter ; Simon, Jörg ; Lanz, Christa ; Klimmek, Oliver ; Nandakumar, Ramkumar ; Gross, Roland ; Rosinus, Andrea ; Keller, Heike ; Jagtap, Pratik ; Linke, Burkhard ; Meyer, Folker ; Lederer, Hermann ; Schuster, Stephan C.</creator><creatorcontrib>Baar, Claudia ; Eppinger, Mark ; Raddatz, Guenter ; Simon, Jörg ; Lanz, Christa ; Klimmek, Oliver ; Nandakumar, Ramkumar ; Gross, Roland ; Rosinus, Andrea ; Keller, Heike ; Jagtap, Pratik ; Linke, Burkhard ; Meyer, Folker ; Lederer, Hermann ; Schuster, Stephan C.</creatorcontrib><description>To understand the origin and emergence of pathogenic bacteria, knowledge of the genetic inventory from their nonpathogenic relatives is a prerequisite. Therefore, the 2.11-megabase genome sequence of Wolinella succinogenes, which is closely related to the pathogenic bacteria Helicobacter pylori and Campylobacter jejuni, was determined. Despite being considered nonpathogenic to its bovine host, W. succinogenes holds an extensive repertoire of genes homologous to known bacterial virulence factors. Many of these genes have been acquired by lateral gene transfer, because part of the virulence plasmid pVir and an N-linked glycosylation gene cluster were found to be syntenic between C. jejuni and genomic islands of W. succinogenes. In contrast to other host-adapted bacteria, W. succinogenes does harbor the highest density of bacterial sensor kinases found in any bacterial genome to date, together with an elaborate signaling circuitry of the GGDEF family of proteins. Because the analysis of the W. succinogenes genome also revealed genes related to soil- and plant-associated bacteria such as the nif genes, W. succinogenes may represent a member of the epsilon proteobacteria with a life cycle outside its host.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1932838100</identifier><identifier>PMID: 14500908</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Bacteria ; Bacterial Proteins - metabolism ; Biological Sciences ; Cattle ; Comparative analysis ; Enzymes ; Genes ; Genome, Bacterial ; Genomes ; Genomics ; Glycosylation ; Islands ; Microbiology ; Molecular Sequence Data ; Open Reading Frames ; Operator regions ; Pathogens ; Phylogeny ; Plasmids ; Regulator genes ; Signal Transduction ; Virulence - genetics ; Wolinella - genetics ; Wolinella - metabolism ; Wolinella - pathogenicity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2003-09, Vol.100 (20), p.11690-11695</ispartof><rights>Copyright 1993-2003 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Sep 30, 2003</rights><rights>Copyright © 2003, The National Academy of Sciences 2003</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-56a31d9c879822f1a1913a9a07728c18bc49b5a012201cd3c795f18e2a6c3b393</citedby><cites>FETCH-LOGICAL-c526t-56a31d9c879822f1a1913a9a07728c18bc49b5a012201cd3c795f18e2a6c3b393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/100/20.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3147853$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3147853$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/14500908$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Baar, Claudia</creatorcontrib><creatorcontrib>Eppinger, Mark</creatorcontrib><creatorcontrib>Raddatz, Guenter</creatorcontrib><creatorcontrib>Simon, Jörg</creatorcontrib><creatorcontrib>Lanz, Christa</creatorcontrib><creatorcontrib>Klimmek, Oliver</creatorcontrib><creatorcontrib>Nandakumar, Ramkumar</creatorcontrib><creatorcontrib>Gross, Roland</creatorcontrib><creatorcontrib>Rosinus, Andrea</creatorcontrib><creatorcontrib>Keller, Heike</creatorcontrib><creatorcontrib>Jagtap, Pratik</creatorcontrib><creatorcontrib>Linke, Burkhard</creatorcontrib><creatorcontrib>Meyer, Folker</creatorcontrib><creatorcontrib>Lederer, Hermann</creatorcontrib><creatorcontrib>Schuster, Stephan C.</creatorcontrib><title>Complete Genome Sequence and Analysis of Wolinella succinogenes</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>To understand the origin and emergence of pathogenic bacteria, knowledge of the genetic inventory from their nonpathogenic relatives is a prerequisite. Therefore, the 2.11-megabase genome sequence of Wolinella succinogenes, which is closely related to the pathogenic bacteria Helicobacter pylori and Campylobacter jejuni, was determined. Despite being considered nonpathogenic to its bovine host, W. succinogenes holds an extensive repertoire of genes homologous to known bacterial virulence factors. Many of these genes have been acquired by lateral gene transfer, because part of the virulence plasmid pVir and an N-linked glycosylation gene cluster were found to be syntenic between C. jejuni and genomic islands of W. succinogenes. In contrast to other host-adapted bacteria, W. succinogenes does harbor the highest density of bacterial sensor kinases found in any bacterial genome to date, together with an elaborate signaling circuitry of the GGDEF family of proteins. Because the analysis of the W. succinogenes genome also revealed genes related to soil- and plant-associated bacteria such as the nif genes, W. succinogenes may represent a member of the epsilon proteobacteria with a life cycle outside its host.</description><subject>Bacteria</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Cattle</subject><subject>Comparative analysis</subject><subject>Enzymes</subject><subject>Genes</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Glycosylation</subject><subject>Islands</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Open Reading Frames</subject><subject>Operator regions</subject><subject>Pathogens</subject><subject>Phylogeny</subject><subject>Plasmids</subject><subject>Regulator genes</subject><subject>Signal Transduction</subject><subject>Virulence - genetics</subject><subject>Wolinella - genetics</subject><subject>Wolinella - metabolism</subject><subject>Wolinella - pathogenicity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkcFLHDEUxoO06Nb27KWUwUPBw-h7yWSSHEqRpVVB8FClx5DNZnSWTLKdzEj975thF1d78ZRAft_38r2PkCOEUwTBztbBpFNUjEomEWCPzBAUlnWl4B2ZAVBRyopWB-RDSisAUFzCPjnAiuc7yBn5Po_d2rvBFRcuxM4Vv9yf0QXrChOWxXkw_im1qYhN8Tv6NjjvTZFGa9sQ711w6SN53xif3KfteUjufv64nV-W1zcXV_Pz69JyWg8lrw3DpbJSKElpgwYVMqMMCEGlRbmwlVpwA0gpoF0yKxRvUDpqassWTLFD8m3jux4XnVtaF4beeL3u2870TzqaVr9-Ce2Dvo-PmoKUOOm_bvV9zAHToLs22SlOcHFMWnDBgPL6TRClzBuVE3j8H7iKY58XlvJMrICqmmXobAPZPqbUu-b5xwh6alBPDepdg1nx5WXQHb-tLAPFFpiUOzvIYzVirSaPkzcQ3YzeD-7vkNnPG3aVhtg_wwwrITlj_wDAJLgW</recordid><startdate>20030930</startdate><enddate>20030930</enddate><creator>Baar, Claudia</creator><creator>Eppinger, Mark</creator><creator>Raddatz, Guenter</creator><creator>Simon, Jörg</creator><creator>Lanz, Christa</creator><creator>Klimmek, Oliver</creator><creator>Nandakumar, Ramkumar</creator><creator>Gross, Roland</creator><creator>Rosinus, Andrea</creator><creator>Keller, Heike</creator><creator>Jagtap, Pratik</creator><creator>Linke, Burkhard</creator><creator>Meyer, Folker</creator><creator>Lederer, Hermann</creator><creator>Schuster, Stephan C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20030930</creationdate><title>Complete Genome Sequence and Analysis of Wolinella succinogenes</title><author>Baar, Claudia ; Eppinger, Mark ; Raddatz, Guenter ; Simon, Jörg ; Lanz, Christa ; Klimmek, Oliver ; Nandakumar, Ramkumar ; Gross, Roland ; Rosinus, Andrea ; Keller, Heike ; Jagtap, Pratik ; Linke, Burkhard ; Meyer, Folker ; Lederer, Hermann ; Schuster, Stephan C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-56a31d9c879822f1a1913a9a07728c18bc49b5a012201cd3c795f18e2a6c3b393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>Bacteria</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Cattle</topic><topic>Comparative analysis</topic><topic>Enzymes</topic><topic>Genes</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Glycosylation</topic><topic>Islands</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Open Reading Frames</topic><topic>Operator regions</topic><topic>Pathogens</topic><topic>Phylogeny</topic><topic>Plasmids</topic><topic>Regulator genes</topic><topic>Signal Transduction</topic><topic>Virulence - genetics</topic><topic>Wolinella - genetics</topic><topic>Wolinella - metabolism</topic><topic>Wolinella - pathogenicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baar, Claudia</creatorcontrib><creatorcontrib>Eppinger, Mark</creatorcontrib><creatorcontrib>Raddatz, Guenter</creatorcontrib><creatorcontrib>Simon, Jörg</creatorcontrib><creatorcontrib>Lanz, Christa</creatorcontrib><creatorcontrib>Klimmek, Oliver</creatorcontrib><creatorcontrib>Nandakumar, Ramkumar</creatorcontrib><creatorcontrib>Gross, Roland</creatorcontrib><creatorcontrib>Rosinus, Andrea</creatorcontrib><creatorcontrib>Keller, Heike</creatorcontrib><creatorcontrib>Jagtap, Pratik</creatorcontrib><creatorcontrib>Linke, Burkhard</creatorcontrib><creatorcontrib>Meyer, Folker</creatorcontrib><creatorcontrib>Lederer, Hermann</creatorcontrib><creatorcontrib>Schuster, Stephan C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baar, Claudia</au><au>Eppinger, Mark</au><au>Raddatz, Guenter</au><au>Simon, Jörg</au><au>Lanz, Christa</au><au>Klimmek, Oliver</au><au>Nandakumar, Ramkumar</au><au>Gross, Roland</au><au>Rosinus, Andrea</au><au>Keller, Heike</au><au>Jagtap, Pratik</au><au>Linke, Burkhard</au><au>Meyer, Folker</au><au>Lederer, Hermann</au><au>Schuster, Stephan C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete Genome Sequence and Analysis of Wolinella succinogenes</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2003-09-30</date><risdate>2003</risdate><volume>100</volume><issue>20</issue><spage>11690</spage><epage>11695</epage><pages>11690-11695</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>To understand the origin and emergence of pathogenic bacteria, knowledge of the genetic inventory from their nonpathogenic relatives is a prerequisite. Therefore, the 2.11-megabase genome sequence of Wolinella succinogenes, which is closely related to the pathogenic bacteria Helicobacter pylori and Campylobacter jejuni, was determined. Despite being considered nonpathogenic to its bovine host, W. succinogenes holds an extensive repertoire of genes homologous to known bacterial virulence factors. Many of these genes have been acquired by lateral gene transfer, because part of the virulence plasmid pVir and an N-linked glycosylation gene cluster were found to be syntenic between C. jejuni and genomic islands of W. succinogenes. In contrast to other host-adapted bacteria, W. succinogenes does harbor the highest density of bacterial sensor kinases found in any bacterial genome to date, together with an elaborate signaling circuitry of the GGDEF family of proteins. Because the analysis of the W. succinogenes genome also revealed genes related to soil- and plant-associated bacteria such as the nif genes, W. succinogenes may represent a member of the epsilon proteobacteria with a life cycle outside its host.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>14500908</pmid><doi>10.1073/pnas.1932838100</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2003-09, Vol.100 (20), p.11690-11695 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_18884286 |
source | Jstor Complete Legacy; MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Bacteria Bacterial Proteins - metabolism Biological Sciences Cattle Comparative analysis Enzymes Genes Genome, Bacterial Genomes Genomics Glycosylation Islands Microbiology Molecular Sequence Data Open Reading Frames Operator regions Pathogens Phylogeny Plasmids Regulator genes Signal Transduction Virulence - genetics Wolinella - genetics Wolinella - metabolism Wolinella - pathogenicity |
title | Complete Genome Sequence and Analysis of Wolinella succinogenes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T17%3A14%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20Genome%20Sequence%20and%20Analysis%20of%20Wolinella%20succinogenes&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Baar,%20Claudia&rft.date=2003-09-30&rft.volume=100&rft.issue=20&rft.spage=11690&rft.epage=11695&rft.pages=11690-11695&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1932838100&rft_dat=%3Cjstor_proqu%3E3147853%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201402963&rft_id=info:pmid/14500908&rft_jstor_id=3147853&rfr_iscdi=true |