A unified model of the standard genetic code

The Rodin–Ohno (RO) and the Delarue models divide the table of the genetic code into two classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the tRNA acceptor stem, respectively. These models are asymmetric but they are biologically meaning...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Royal Society open science 2017-03, Vol.4 (3), p.160908-160908
Hauptverfasser: José, Marco V., Zamudio, Gabriel S., Morgado, Eberto R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 160908
container_issue 3
container_start_page 160908
container_title Royal Society open science
container_volume 4
creator José, Marco V.
Zamudio, Gabriel S.
Morgado, Eberto R.
description The Rodin–Ohno (RO) and the Delarue models divide the table of the genetic code into two classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the tRNA acceptor stem, respectively. These models are asymmetric but they are biologically meaningful. On the other hand, the standard genetic code (SGC) can be derived from the primeval RNY code (R stands for purines, Y for pyrimidines and N any of them). In this work, the RO-model is derived by means of group actions, namely, symmetries represented by automorphisms, assuming that the SGC originated from a primeval RNY code. It turns out that the RO-model is symmetric in a six-dimensional (6D) hypercube. Conversely, using the same automorphisms, we show that the RO-model can lead to the SGC. In addition, the asymmetric Delarue model becomes symmetric by means of quotient group operations. We formulate isometric functions that convert the class aaRS I into the class aaRS II and vice versa. We show that the four polar requirement categories display a symmetrical arrangement in our 6D hypercube. Altogether these results cannot be attained, neither in two nor in three dimensions. We discuss the present unified 6D algebraic model, which is compatible with both the SGC (based upon the primeval RNY code) and the RO-model.
doi_str_mv 10.1098/rsos.160908
format Article
fullrecord <record><control><sourceid>proquest_royal</sourceid><recordid>TN_cdi_proquest_miscellaneous_1887424262</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_7bc4fdec31bc44519d5c20079b03a29a</doaj_id><sourcerecordid>1887424262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c572t-694a5e963c2e64531795325e92034ae248d59371e562b385162494b1820299b03</originalsourceid><addsrcrecordid>eNp9kc1r3DAQxUVpaUKSU-_Fx0K7yejLki6FEPoRCASS9NSDkOXxRovX2kp2YPvXV1unYVNK0UGjmcfvDXqEvKFwSsHos5RjPqU1GNAvyCEDKRZSAX-5Vx-Qk5xXAEAlcFWr1-SAaQGSK31IPpxX0xC6gG21ji32Veyq8R6rPLqhdamtljjgGHzly_SYvOpcn_Hk8T4i3z5_urv4uri6_nJ5cX618FKxcVEb4SSamnuGtZCcKiM5Kx0GXDhkQrfScEVR1qzhWtKaCSMaqhkwYxrgR-Ry5rbRrewmhbVLWxtdsL8bMS2tS2WpHq1qvOha9JyWQkhqWukZgNphHDOusD7OrM3UrLH1OIzJ9c-gzydDuLfL-GAl1-XIAnj3CEjxx4R5tOuQPfa9GzBO2VKtlWCC1axI389Sn2LOCbsnGwp2F5fdxWXnuIr67f5mT9o_4RTB91mQ4rZ8d_QBx61dxSkN5Wlvbq9vH0TgtrAoKApM2J9hM3sIG3Ke0PJ9y7_s4X_0f238C45YvYo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1887424262</pqid></control><display><type>article</type><title>A unified model of the standard genetic code</title><source>DOAJ Directory of Open Access Journals</source><source>Royal Society Open Access Journals</source><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>José, Marco V. ; Zamudio, Gabriel S. ; Morgado, Eberto R.</creator><creatorcontrib>José, Marco V. ; Zamudio, Gabriel S. ; Morgado, Eberto R.</creatorcontrib><description>The Rodin–Ohno (RO) and the Delarue models divide the table of the genetic code into two classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the tRNA acceptor stem, respectively. These models are asymmetric but they are biologically meaningful. On the other hand, the standard genetic code (SGC) can be derived from the primeval RNY code (R stands for purines, Y for pyrimidines and N any of them). In this work, the RO-model is derived by means of group actions, namely, symmetries represented by automorphisms, assuming that the SGC originated from a primeval RNY code. It turns out that the RO-model is symmetric in a six-dimensional (6D) hypercube. Conversely, using the same automorphisms, we show that the RO-model can lead to the SGC. In addition, the asymmetric Delarue model becomes symmetric by means of quotient group operations. We formulate isometric functions that convert the class aaRS I into the class aaRS II and vice versa. We show that the four polar requirement categories display a symmetrical arrangement in our 6D hypercube. Altogether these results cannot be attained, neither in two nor in three dimensions. We discuss the present unified 6D algebraic model, which is compatible with both the SGC (based upon the primeval RNY code) and the RO-model.</description><identifier>ISSN: 2054-5703</identifier><identifier>EISSN: 2054-5703</identifier><identifier>DOI: 10.1098/rsos.160908</identifier><identifier>PMID: 28405378</identifier><language>eng</language><publisher>England: The Royal Society Publishing</publisher><subject>Aminoacyl-Trna Synthetases ; Automorphisms ; Genetics ; Group Actions ; Polar Requirement ; Standard Genetic Code ; Symmetry Groups</subject><ispartof>Royal Society open science, 2017-03, Vol.4 (3), p.160908-160908</ispartof><rights>2017 The Authors.</rights><rights>2017 The Authors. 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c572t-694a5e963c2e64531795325e92034ae248d59371e562b385162494b1820299b03</citedby><cites>FETCH-LOGICAL-c572t-694a5e963c2e64531795325e92034ae248d59371e562b385162494b1820299b03</cites><orcidid>0000-0003-4486-9843 ; 0000-0001-8497-6681</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383835/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5383835/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,3322,27147,27924,27925,53791,53793,55555,55565</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28405378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>José, Marco V.</creatorcontrib><creatorcontrib>Zamudio, Gabriel S.</creatorcontrib><creatorcontrib>Morgado, Eberto R.</creatorcontrib><title>A unified model of the standard genetic code</title><title>Royal Society open science</title><addtitle>R. Soc. open sci</addtitle><addtitle>R Soc Open Sci</addtitle><description>The Rodin–Ohno (RO) and the Delarue models divide the table of the genetic code into two classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the tRNA acceptor stem, respectively. These models are asymmetric but they are biologically meaningful. On the other hand, the standard genetic code (SGC) can be derived from the primeval RNY code (R stands for purines, Y for pyrimidines and N any of them). In this work, the RO-model is derived by means of group actions, namely, symmetries represented by automorphisms, assuming that the SGC originated from a primeval RNY code. It turns out that the RO-model is symmetric in a six-dimensional (6D) hypercube. Conversely, using the same automorphisms, we show that the RO-model can lead to the SGC. In addition, the asymmetric Delarue model becomes symmetric by means of quotient group operations. We formulate isometric functions that convert the class aaRS I into the class aaRS II and vice versa. We show that the four polar requirement categories display a symmetrical arrangement in our 6D hypercube. Altogether these results cannot be attained, neither in two nor in three dimensions. We discuss the present unified 6D algebraic model, which is compatible with both the SGC (based upon the primeval RNY code) and the RO-model.</description><subject>Aminoacyl-Trna Synthetases</subject><subject>Automorphisms</subject><subject>Genetics</subject><subject>Group Actions</subject><subject>Polar Requirement</subject><subject>Standard Genetic Code</subject><subject>Symmetry Groups</subject><issn>2054-5703</issn><issn>2054-5703</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kc1r3DAQxUVpaUKSU-_Fx0K7yejLki6FEPoRCASS9NSDkOXxRovX2kp2YPvXV1unYVNK0UGjmcfvDXqEvKFwSsHos5RjPqU1GNAvyCEDKRZSAX-5Vx-Qk5xXAEAlcFWr1-SAaQGSK31IPpxX0xC6gG21ji32Veyq8R6rPLqhdamtljjgGHzly_SYvOpcn_Hk8T4i3z5_urv4uri6_nJ5cX618FKxcVEb4SSamnuGtZCcKiM5Kx0GXDhkQrfScEVR1qzhWtKaCSMaqhkwYxrgR-Ry5rbRrewmhbVLWxtdsL8bMS2tS2WpHq1qvOha9JyWQkhqWukZgNphHDOusD7OrM3UrLH1OIzJ9c-gzydDuLfL-GAl1-XIAnj3CEjxx4R5tOuQPfa9GzBO2VKtlWCC1axI389Sn2LOCbsnGwp2F5fdxWXnuIr67f5mT9o_4RTB91mQ4rZ8d_QBx61dxSkN5Wlvbq9vH0TgtrAoKApM2J9hM3sIG3Ke0PJ9y7_s4X_0f238C45YvYo</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>José, Marco V.</creator><creator>Zamudio, Gabriel S.</creator><creator>Morgado, Eberto R.</creator><general>The Royal Society Publishing</general><general>The Royal Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-4486-9843</orcidid><orcidid>https://orcid.org/0000-0001-8497-6681</orcidid></search><sort><creationdate>20170301</creationdate><title>A unified model of the standard genetic code</title><author>José, Marco V. ; Zamudio, Gabriel S. ; Morgado, Eberto R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c572t-694a5e963c2e64531795325e92034ae248d59371e562b385162494b1820299b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aminoacyl-Trna Synthetases</topic><topic>Automorphisms</topic><topic>Genetics</topic><topic>Group Actions</topic><topic>Polar Requirement</topic><topic>Standard Genetic Code</topic><topic>Symmetry Groups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>José, Marco V.</creatorcontrib><creatorcontrib>Zamudio, Gabriel S.</creatorcontrib><creatorcontrib>Morgado, Eberto R.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Royal Society open science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>José, Marco V.</au><au>Zamudio, Gabriel S.</au><au>Morgado, Eberto R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A unified model of the standard genetic code</atitle><jtitle>Royal Society open science</jtitle><stitle>R. Soc. open sci</stitle><addtitle>R Soc Open Sci</addtitle><date>2017-03-01</date><risdate>2017</risdate><volume>4</volume><issue>3</issue><spage>160908</spage><epage>160908</epage><pages>160908-160908</pages><issn>2054-5703</issn><eissn>2054-5703</eissn><abstract>The Rodin–Ohno (RO) and the Delarue models divide the table of the genetic code into two classes of aminoacyl-tRNA synthetases (aaRSs I and II) with recognition from the minor or major groove sides of the tRNA acceptor stem, respectively. These models are asymmetric but they are biologically meaningful. On the other hand, the standard genetic code (SGC) can be derived from the primeval RNY code (R stands for purines, Y for pyrimidines and N any of them). In this work, the RO-model is derived by means of group actions, namely, symmetries represented by automorphisms, assuming that the SGC originated from a primeval RNY code. It turns out that the RO-model is symmetric in a six-dimensional (6D) hypercube. Conversely, using the same automorphisms, we show that the RO-model can lead to the SGC. In addition, the asymmetric Delarue model becomes symmetric by means of quotient group operations. We formulate isometric functions that convert the class aaRS I into the class aaRS II and vice versa. We show that the four polar requirement categories display a symmetrical arrangement in our 6D hypercube. Altogether these results cannot be attained, neither in two nor in three dimensions. We discuss the present unified 6D algebraic model, which is compatible with both the SGC (based upon the primeval RNY code) and the RO-model.</abstract><cop>England</cop><pub>The Royal Society Publishing</pub><pmid>28405378</pmid><doi>10.1098/rsos.160908</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-4486-9843</orcidid><orcidid>https://orcid.org/0000-0001-8497-6681</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2054-5703
ispartof Royal Society open science, 2017-03, Vol.4 (3), p.160908-160908
issn 2054-5703
2054-5703
language eng
recordid cdi_proquest_miscellaneous_1887424262
source DOAJ Directory of Open Access Journals; Royal Society Open Access Journals; PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Aminoacyl-Trna Synthetases
Automorphisms
Genetics
Group Actions
Polar Requirement
Standard Genetic Code
Symmetry Groups
title A unified model of the standard genetic code
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T01%3A57%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_royal&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20unified%20model%20of%20the%20standard%20genetic%20code&rft.jtitle=Royal%20Society%20open%20science&rft.au=Jos%C3%A9,%20Marco%20V.&rft.date=2017-03-01&rft.volume=4&rft.issue=3&rft.spage=160908&rft.epage=160908&rft.pages=160908-160908&rft.issn=2054-5703&rft.eissn=2054-5703&rft_id=info:doi/10.1098/rsos.160908&rft_dat=%3Cproquest_royal%3E1887424262%3C/proquest_royal%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1887424262&rft_id=info:pmid/28405378&rft_doaj_id=oai_doaj_org_article_7bc4fdec31bc44519d5c20079b03a29a&rfr_iscdi=true