A Risk Model for the Lyme Disease Vector Ixodes scapularis (Acari: Ixodidae) in the Prairie Provinces of Canada
Lyme disease is emerging in Canada due to geographic range expansion of the tick vector Ixodes scapularis Say. Recent areas of emergence include parts of the southeastern Canadian Prairie region. We developed a map of potential risk areas for future I. scapularis establishment in the Canadian Prairi...
Gespeichert in:
Veröffentlicht in: | Journal of medical entomology 2017-07, Vol.54 (4), p.862-868 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 868 |
---|---|
container_issue | 4 |
container_start_page | 862 |
container_title | Journal of medical entomology |
container_volume | 54 |
creator | Gabriele-Rivet, Vanessa Koffi, Jules K. Pelcat, Yann Arsenault, Julie Cheng, Angela Lindsay, L. Robbin Lysyk, Timothy J. Rochon, Kateryn Ogden, Nicholas H. |
description | Lyme disease is emerging in Canada due to geographic range expansion of the tick vector Ixodes scapularis Say. Recent areas of emergence include parts of the southeastern Canadian Prairie region. We developed a map of potential risk areas for future I. scapularis establishment in the Canadian Prairie Provinces. Six I. scapularis risk algorithms were developed using different formulations of three indices for environmental suitability: temperature using annual cumulative degree-days > 0 °C (DD > 0 °C; obtained from Moderate Resolution Imaging Spectroradiometer satellite data as an index of conditions that allow I. scapularis to complete its life cycle), habitat as a combined geolayer of forest cover and agricultural land use, and rainfall. The relative performance of these risk algorithms was assessed using receiver-operating characteristic (ROC) area under the curve (AUC) analysis with data on presence–absence of I. scapularis obtained from recent field surveillance in the Prairie Provinces accumulated from a number of sources. The ROC AUC values for the risk algorithms were significantly different (P < 0.01). The algorithm with six categories of DD > 0 °C, habitat as a simple dichotomous variable of presence or absence of forest, and normalized rainfall had the highest AUC of 0.74, representing “fair to good” performance of the risk algorithm. This algorithm had good (>80%) sensitivity in predicting positive I. scapularis surveillance sites, but low (50%) specificity as expected in this region where not all environmentally suitable habitats are expected to be occupied. Further prospective studies are needed to validate and perhaps improve the risk algorithm. |
doi_str_mv | 10.1093/jme/tjx036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1887053599</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jme/tjx036</oup_id><sourcerecordid>1985684703</sourcerecordid><originalsourceid>FETCH-LOGICAL-b378t-81fd8d21f0530a647b2ad14e7a8233d5ff96e22afe3199f2080e984b11172c973</originalsourceid><addsrcrecordid>eNp9kVtLxDAQhYMoul5e_AESEGEVqrn0kvi2rFdYUUR9LWk7waxtsyat6L83664--LBPB2a-OczMQWifklNKJD-bNnDWTT8JT9fQgEouIiaZWEcDQhiLWCKSLbTt_ZQQImgsN9EWE1xKlqUDZEf40fg3fGcrqLG2DnevgCdfDeAL40F5wC9QdqF--xkQj32pZn2tnPF4OCqDnv90TKXgGJv2Z_zBKePMXO2HacswZTUeq1ZVahdtaFV72FvqDnq-unwa30ST--vb8WgSFTwTXSSorkTFqCYJJyqNs4KpisaQKcE4rxKtZQqMKQ2cSqkZEQSkiAtKacZKmfEdNFz4zpx978F3eWN8CXWtWrC9z6kQWfBOpAzo4T90anvXhu1yKkWSijgjPFAnC6p01nsHOp850yj3lVOSz2PIQwz5IoYAHywt-6KB6g_9_XsAjhaA7WerjZZnFMbaFlah3xeknCI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1985684703</pqid></control><display><type>article</type><title>A Risk Model for the Lyme Disease Vector Ixodes scapularis (Acari: Ixodidae) in the Prairie Provinces of Canada</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Gabriele-Rivet, Vanessa ; Koffi, Jules K. ; Pelcat, Yann ; Arsenault, Julie ; Cheng, Angela ; Lindsay, L. Robbin ; Lysyk, Timothy J. ; Rochon, Kateryn ; Ogden, Nicholas H.</creator><creatorcontrib>Gabriele-Rivet, Vanessa ; Koffi, Jules K. ; Pelcat, Yann ; Arsenault, Julie ; Cheng, Angela ; Lindsay, L. Robbin ; Lysyk, Timothy J. ; Rochon, Kateryn ; Ogden, Nicholas H.</creatorcontrib><description>Lyme disease is emerging in Canada due to geographic range expansion of the tick vector Ixodes scapularis Say. Recent areas of emergence include parts of the southeastern Canadian Prairie region. We developed a map of potential risk areas for future I. scapularis establishment in the Canadian Prairie Provinces. Six I. scapularis risk algorithms were developed using different formulations of three indices for environmental suitability: temperature using annual cumulative degree-days > 0 °C (DD > 0 °C; obtained from Moderate Resolution Imaging Spectroradiometer satellite data as an index of conditions that allow I. scapularis to complete its life cycle), habitat as a combined geolayer of forest cover and agricultural land use, and rainfall. The relative performance of these risk algorithms was assessed using receiver-operating characteristic (ROC) area under the curve (AUC) analysis with data on presence–absence of I. scapularis obtained from recent field surveillance in the Prairie Provinces accumulated from a number of sources. The ROC AUC values for the risk algorithms were significantly different (P < 0.01). The algorithm with six categories of DD > 0 °C, habitat as a simple dichotomous variable of presence or absence of forest, and normalized rainfall had the highest AUC of 0.74, representing “fair to good” performance of the risk algorithm. This algorithm had good (>80%) sensitivity in predicting positive I. scapularis surveillance sites, but low (50%) specificity as expected in this region where not all environmentally suitable habitats are expected to be occupied. Further prospective studies are needed to validate and perhaps improve the risk algorithm.</description><identifier>ISSN: 0022-2585</identifier><identifier>EISSN: 1938-2928</identifier><identifier>DOI: 10.1093/jme/tjx036</identifier><identifier>PMID: 28399276</identifier><language>eng</language><publisher>England: Entomological Society of America</publisher><subject>Agricultural land ; Alberta ; Algorithms ; Animal Distribution ; Animals ; Arachnid Vectors - physiology ; Canada ; Data processing ; Ecological risk assessment ; Forests ; Formulations ; Geographic Mapping ; Habitats ; Ixodes - physiology ; Ixodes scapularis ; Land use ; Life cycle engineering ; Life cycles ; Lyme disease ; Manitoba ; MODELING/GIS, RISK ASSESSMENT, ECONOMIC IMPACT ; Models, Biological ; Prairie Provinces ; Rainfall ; Range extension ; Risk ; Risk map ; Saskatchewan ; Spectroradiometers ; Surveillance ; Vector-borne diseases</subject><ispartof>Journal of medical entomology, 2017-07, Vol.54 (4), p.862-868</ispartof><rights>Crown copyright 2017.</rights><rights>Crown copyright 2017. 2017</rights><rights>Copyright Oxford University Press, UK Jul 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b378t-81fd8d21f0530a647b2ad14e7a8233d5ff96e22afe3199f2080e984b11172c973</citedby><cites>FETCH-LOGICAL-b378t-81fd8d21f0530a647b2ad14e7a8233d5ff96e22afe3199f2080e984b11172c973</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28399276$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gabriele-Rivet, Vanessa</creatorcontrib><creatorcontrib>Koffi, Jules K.</creatorcontrib><creatorcontrib>Pelcat, Yann</creatorcontrib><creatorcontrib>Arsenault, Julie</creatorcontrib><creatorcontrib>Cheng, Angela</creatorcontrib><creatorcontrib>Lindsay, L. Robbin</creatorcontrib><creatorcontrib>Lysyk, Timothy J.</creatorcontrib><creatorcontrib>Rochon, Kateryn</creatorcontrib><creatorcontrib>Ogden, Nicholas H.</creatorcontrib><title>A Risk Model for the Lyme Disease Vector Ixodes scapularis (Acari: Ixodidae) in the Prairie Provinces of Canada</title><title>Journal of medical entomology</title><addtitle>J Med Entomol</addtitle><description>Lyme disease is emerging in Canada due to geographic range expansion of the tick vector Ixodes scapularis Say. Recent areas of emergence include parts of the southeastern Canadian Prairie region. We developed a map of potential risk areas for future I. scapularis establishment in the Canadian Prairie Provinces. Six I. scapularis risk algorithms were developed using different formulations of three indices for environmental suitability: temperature using annual cumulative degree-days > 0 °C (DD > 0 °C; obtained from Moderate Resolution Imaging Spectroradiometer satellite data as an index of conditions that allow I. scapularis to complete its life cycle), habitat as a combined geolayer of forest cover and agricultural land use, and rainfall. The relative performance of these risk algorithms was assessed using receiver-operating characteristic (ROC) area under the curve (AUC) analysis with data on presence–absence of I. scapularis obtained from recent field surveillance in the Prairie Provinces accumulated from a number of sources. The ROC AUC values for the risk algorithms were significantly different (P < 0.01). The algorithm with six categories of DD > 0 °C, habitat as a simple dichotomous variable of presence or absence of forest, and normalized rainfall had the highest AUC of 0.74, representing “fair to good” performance of the risk algorithm. This algorithm had good (>80%) sensitivity in predicting positive I. scapularis surveillance sites, but low (50%) specificity as expected in this region where not all environmentally suitable habitats are expected to be occupied. Further prospective studies are needed to validate and perhaps improve the risk algorithm.</description><subject>Agricultural land</subject><subject>Alberta</subject><subject>Algorithms</subject><subject>Animal Distribution</subject><subject>Animals</subject><subject>Arachnid Vectors - physiology</subject><subject>Canada</subject><subject>Data processing</subject><subject>Ecological risk assessment</subject><subject>Forests</subject><subject>Formulations</subject><subject>Geographic Mapping</subject><subject>Habitats</subject><subject>Ixodes - physiology</subject><subject>Ixodes scapularis</subject><subject>Land use</subject><subject>Life cycle engineering</subject><subject>Life cycles</subject><subject>Lyme disease</subject><subject>Manitoba</subject><subject>MODELING/GIS, RISK ASSESSMENT, ECONOMIC IMPACT</subject><subject>Models, Biological</subject><subject>Prairie Provinces</subject><subject>Rainfall</subject><subject>Range extension</subject><subject>Risk</subject><subject>Risk map</subject><subject>Saskatchewan</subject><subject>Spectroradiometers</subject><subject>Surveillance</subject><subject>Vector-borne diseases</subject><issn>0022-2585</issn><issn>1938-2928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kVtLxDAQhYMoul5e_AESEGEVqrn0kvi2rFdYUUR9LWk7waxtsyat6L83664--LBPB2a-OczMQWifklNKJD-bNnDWTT8JT9fQgEouIiaZWEcDQhiLWCKSLbTt_ZQQImgsN9EWE1xKlqUDZEf40fg3fGcrqLG2DnevgCdfDeAL40F5wC9QdqF--xkQj32pZn2tnPF4OCqDnv90TKXgGJv2Z_zBKePMXO2HacswZTUeq1ZVahdtaFV72FvqDnq-unwa30ST--vb8WgSFTwTXSSorkTFqCYJJyqNs4KpisaQKcE4rxKtZQqMKQ2cSqkZEQSkiAtKacZKmfEdNFz4zpx978F3eWN8CXWtWrC9z6kQWfBOpAzo4T90anvXhu1yKkWSijgjPFAnC6p01nsHOp850yj3lVOSz2PIQwz5IoYAHywt-6KB6g_9_XsAjhaA7WerjZZnFMbaFlah3xeknCI</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Gabriele-Rivet, Vanessa</creator><creator>Koffi, Jules K.</creator><creator>Pelcat, Yann</creator><creator>Arsenault, Julie</creator><creator>Cheng, Angela</creator><creator>Lindsay, L. Robbin</creator><creator>Lysyk, Timothy J.</creator><creator>Rochon, Kateryn</creator><creator>Ogden, Nicholas H.</creator><general>Entomological Society of America</general><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8C1</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>A Risk Model for the Lyme Disease Vector Ixodes scapularis (Acari: Ixodidae) in the Prairie Provinces of Canada</title><author>Gabriele-Rivet, Vanessa ; Koffi, Jules K. ; Pelcat, Yann ; Arsenault, Julie ; Cheng, Angela ; Lindsay, L. Robbin ; Lysyk, Timothy J. ; Rochon, Kateryn ; Ogden, Nicholas H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b378t-81fd8d21f0530a647b2ad14e7a8233d5ff96e22afe3199f2080e984b11172c973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural land</topic><topic>Alberta</topic><topic>Algorithms</topic><topic>Animal Distribution</topic><topic>Animals</topic><topic>Arachnid Vectors - physiology</topic><topic>Canada</topic><topic>Data processing</topic><topic>Ecological risk assessment</topic><topic>Forests</topic><topic>Formulations</topic><topic>Geographic Mapping</topic><topic>Habitats</topic><topic>Ixodes - physiology</topic><topic>Ixodes scapularis</topic><topic>Land use</topic><topic>Life cycle engineering</topic><topic>Life cycles</topic><topic>Lyme disease</topic><topic>Manitoba</topic><topic>MODELING/GIS, RISK ASSESSMENT, ECONOMIC IMPACT</topic><topic>Models, Biological</topic><topic>Prairie Provinces</topic><topic>Rainfall</topic><topic>Range extension</topic><topic>Risk</topic><topic>Risk map</topic><topic>Saskatchewan</topic><topic>Spectroradiometers</topic><topic>Surveillance</topic><topic>Vector-borne diseases</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gabriele-Rivet, Vanessa</creatorcontrib><creatorcontrib>Koffi, Jules K.</creatorcontrib><creatorcontrib>Pelcat, Yann</creatorcontrib><creatorcontrib>Arsenault, Julie</creatorcontrib><creatorcontrib>Cheng, Angela</creatorcontrib><creatorcontrib>Lindsay, L. Robbin</creatorcontrib><creatorcontrib>Lysyk, Timothy J.</creatorcontrib><creatorcontrib>Rochon, Kateryn</creatorcontrib><creatorcontrib>Ogden, Nicholas H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Public Health Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of medical entomology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gabriele-Rivet, Vanessa</au><au>Koffi, Jules K.</au><au>Pelcat, Yann</au><au>Arsenault, Julie</au><au>Cheng, Angela</au><au>Lindsay, L. Robbin</au><au>Lysyk, Timothy J.</au><au>Rochon, Kateryn</au><au>Ogden, Nicholas H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Risk Model for the Lyme Disease Vector Ixodes scapularis (Acari: Ixodidae) in the Prairie Provinces of Canada</atitle><jtitle>Journal of medical entomology</jtitle><addtitle>J Med Entomol</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>54</volume><issue>4</issue><spage>862</spage><epage>868</epage><pages>862-868</pages><issn>0022-2585</issn><eissn>1938-2928</eissn><abstract>Lyme disease is emerging in Canada due to geographic range expansion of the tick vector Ixodes scapularis Say. Recent areas of emergence include parts of the southeastern Canadian Prairie region. We developed a map of potential risk areas for future I. scapularis establishment in the Canadian Prairie Provinces. Six I. scapularis risk algorithms were developed using different formulations of three indices for environmental suitability: temperature using annual cumulative degree-days > 0 °C (DD > 0 °C; obtained from Moderate Resolution Imaging Spectroradiometer satellite data as an index of conditions that allow I. scapularis to complete its life cycle), habitat as a combined geolayer of forest cover and agricultural land use, and rainfall. The relative performance of these risk algorithms was assessed using receiver-operating characteristic (ROC) area under the curve (AUC) analysis with data on presence–absence of I. scapularis obtained from recent field surveillance in the Prairie Provinces accumulated from a number of sources. The ROC AUC values for the risk algorithms were significantly different (P < 0.01). The algorithm with six categories of DD > 0 °C, habitat as a simple dichotomous variable of presence or absence of forest, and normalized rainfall had the highest AUC of 0.74, representing “fair to good” performance of the risk algorithm. This algorithm had good (>80%) sensitivity in predicting positive I. scapularis surveillance sites, but low (50%) specificity as expected in this region where not all environmentally suitable habitats are expected to be occupied. Further prospective studies are needed to validate and perhaps improve the risk algorithm.</abstract><cop>England</cop><pub>Entomological Society of America</pub><pmid>28399276</pmid><doi>10.1093/jme/tjx036</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-2585 |
ispartof | Journal of medical entomology, 2017-07, Vol.54 (4), p.862-868 |
issn | 0022-2585 1938-2928 |
language | eng |
recordid | cdi_proquest_miscellaneous_1887053599 |
source | Oxford University Press Journals All Titles (1996-Current); MEDLINE; Alma/SFX Local Collection |
subjects | Agricultural land Alberta Algorithms Animal Distribution Animals Arachnid Vectors - physiology Canada Data processing Ecological risk assessment Forests Formulations Geographic Mapping Habitats Ixodes - physiology Ixodes scapularis Land use Life cycle engineering Life cycles Lyme disease Manitoba MODELING/GIS, RISK ASSESSMENT, ECONOMIC IMPACT Models, Biological Prairie Provinces Rainfall Range extension Risk Risk map Saskatchewan Spectroradiometers Surveillance Vector-borne diseases |
title | A Risk Model for the Lyme Disease Vector Ixodes scapularis (Acari: Ixodidae) in the Prairie Provinces of Canada |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A51%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Risk%20Model%20for%20the%20Lyme%20Disease%20Vector%20Ixodes%20scapularis%20(Acari:%20Ixodidae)%20in%20the%20Prairie%20Provinces%20of%20Canada&rft.jtitle=Journal%20of%20medical%20entomology&rft.au=Gabriele-Rivet,%20Vanessa&rft.date=2017-07-01&rft.volume=54&rft.issue=4&rft.spage=862&rft.epage=868&rft.pages=862-868&rft.issn=0022-2585&rft.eissn=1938-2928&rft_id=info:doi/10.1093/jme/tjx036&rft_dat=%3Cproquest_cross%3E1985684703%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1985684703&rft_id=info:pmid/28399276&rft_oup_id=10.1093/jme/tjx036&rfr_iscdi=true |