High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy
The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae abso...
Gespeichert in:
Veröffentlicht in: | Cytometry. Part A 2017-05, Vol.91 (5), p.494-502 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 502 |
---|---|
container_issue | 5 |
container_start_page | 494 |
container_title | Cytometry. Part A |
container_volume | 91 |
creator | Guo, Baoshan Lei, Cheng Kobayashi, Hirofumi Ito, Takuro Yalikun, Yaxiaer Jiang, Yiyue Tanaka, Yo Ozeki, Yasuyuki Goda, Keisuke |
description | The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population‐averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single‐cell resolution in a non‐invasive and interference‐free manner. Here high‐throughput label‐free single‐cell screening of lipid‐producing microalgal cells with optofluidic time‐stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time‐stretch quantitative phase microscope is based on an integration of a hydrodynamic‐focusing microfluidic chip, an optical time‐stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen‐sufficient and nitrogen‐deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae‐based biofuel production. © 2017 International Society for Advancement of Cytometry |
doi_str_mv | 10.1002/cyto.a.23084 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1887052269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1887052269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4684-2bedffb2205c71a1f8af9cc1d49f323e41963f55b8f35544131bd27ce46fe8e73</originalsourceid><addsrcrecordid>eNp90b1u1TAUB_AIgWgpbMzIEkuHey_-SuKM1VVpkSp1KQOT5TjHN66cj2s7Rdl4BB6CJ-NJ6pDSgYHJx0c_Hfvon2XvCd4RjOknPcdhp3aUYcFfZKckz-mWVwy_fK4pPcnehHCPMcsxo6-zEypYVTEqTrNf1_bQ_v7xM7Z-mA7tOMUNcqoGl3rGA2xQsP3BQbpqcG6DOqv9oNxBOeTsaBsUdGJ9QqieUad0a_tFO1B-6aYSjpMdR2jQMMbBuMk2VqNou4WF6CHqFh0n1UcbVbQPgMZWBVhfCnoY57fZK6NcgHdP51n29fPl3f56e3N79WV_cbPVvBB8S2tojKkpxbkuiSJGKFNpTRpeGUYZcFIVzOR5LQzLc84JI3VDSw28MCCgZGfZ-Tp39MNxghBlZ8OytuphmIIkQpQ4p7SoEv34D70fJt-n30lSUcyLUnCR1GZVyybBg5Gjt53ysyRYLunJJT2p5J_0Ev_wNHSqO2ie8d-4EuAr-G4dzP8dJvff7m4v1rmPzOuw-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920467848</pqid></control><display><type>article</type><title>High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Guo, Baoshan ; Lei, Cheng ; Kobayashi, Hirofumi ; Ito, Takuro ; Yalikun, Yaxiaer ; Jiang, Yiyue ; Tanaka, Yo ; Ozeki, Yasuyuki ; Goda, Keisuke</creator><creatorcontrib>Guo, Baoshan ; Lei, Cheng ; Kobayashi, Hirofumi ; Ito, Takuro ; Yalikun, Yaxiaer ; Jiang, Yiyue ; Tanaka, Yo ; Ozeki, Yasuyuki ; Goda, Keisuke</creatorcontrib><description>The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population‐averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single‐cell resolution in a non‐invasive and interference‐free manner. Here high‐throughput label‐free single‐cell screening of lipid‐producing microalgal cells with optofluidic time‐stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time‐stretch quantitative phase microscope is based on an integration of a hydrodynamic‐focusing microfluidic chip, an optical time‐stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen‐sufficient and nitrogen‐deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae‐based biofuel production. © 2017 International Society for Advancement of Cytometry</description><identifier>ISSN: 1552-4922</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.23084</identifier><identifier>PMID: 28399328</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algae ; Alternative fuels ; Analytical methods ; Aviation fuel ; Biodiesel fuels ; biofuel ; Biofuels ; Biomass ; Carbon dioxide ; Cell Count ; Cell culture ; Classification ; Climate change ; Cytometry ; Digital imaging ; Esters ; Euglena ; Euglena gracilis ; Fluorescence ; Fuel technology ; Global warming ; High-Throughput Screening Assays - methods ; high‐throughput screening ; Integration ; Learning algorithms ; Lipids ; Machine Learning ; Microalgae - cytology ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Microprocessors ; Microscopy ; Microscopy - methods ; Opacity ; optofluidics ; Photosynthesis ; quantitative phase imaging ; Screening ; Single-Cell Analysis - methods ; single‐cell analysis ; Staining ; Sustainable development</subject><ispartof>Cytometry. Part A, 2017-05, Vol.91 (5), p.494-502</ispartof><rights>2017 International Society for Advancement of Cytometry</rights><rights>2017 International Society for Advancement of Cytometry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4684-2bedffb2205c71a1f8af9cc1d49f323e41963f55b8f35544131bd27ce46fe8e73</citedby><cites>FETCH-LOGICAL-c4684-2bedffb2205c71a1f8af9cc1d49f323e41963f55b8f35544131bd27ce46fe8e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.a.23084$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.a.23084$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27928,27929,45578,45579,46413,46837</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28399328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Baoshan</creatorcontrib><creatorcontrib>Lei, Cheng</creatorcontrib><creatorcontrib>Kobayashi, Hirofumi</creatorcontrib><creatorcontrib>Ito, Takuro</creatorcontrib><creatorcontrib>Yalikun, Yaxiaer</creatorcontrib><creatorcontrib>Jiang, Yiyue</creatorcontrib><creatorcontrib>Tanaka, Yo</creatorcontrib><creatorcontrib>Ozeki, Yasuyuki</creatorcontrib><creatorcontrib>Goda, Keisuke</creatorcontrib><title>High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy</title><title>Cytometry. Part A</title><addtitle>Cytometry A</addtitle><description>The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population‐averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single‐cell resolution in a non‐invasive and interference‐free manner. Here high‐throughput label‐free single‐cell screening of lipid‐producing microalgal cells with optofluidic time‐stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time‐stretch quantitative phase microscope is based on an integration of a hydrodynamic‐focusing microfluidic chip, an optical time‐stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen‐sufficient and nitrogen‐deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae‐based biofuel production. © 2017 International Society for Advancement of Cytometry</description><subject>Algae</subject><subject>Alternative fuels</subject><subject>Analytical methods</subject><subject>Aviation fuel</subject><subject>Biodiesel fuels</subject><subject>biofuel</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Cell Count</subject><subject>Cell culture</subject><subject>Classification</subject><subject>Climate change</subject><subject>Cytometry</subject><subject>Digital imaging</subject><subject>Esters</subject><subject>Euglena</subject><subject>Euglena gracilis</subject><subject>Fluorescence</subject><subject>Fuel technology</subject><subject>Global warming</subject><subject>High-Throughput Screening Assays - methods</subject><subject>high‐throughput screening</subject><subject>Integration</subject><subject>Learning algorithms</subject><subject>Lipids</subject><subject>Machine Learning</subject><subject>Microalgae - cytology</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Microprocessors</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Opacity</subject><subject>optofluidics</subject><subject>Photosynthesis</subject><subject>quantitative phase imaging</subject><subject>Screening</subject><subject>Single-Cell Analysis - methods</subject><subject>single‐cell analysis</subject><subject>Staining</subject><subject>Sustainable development</subject><issn>1552-4922</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90b1u1TAUB_AIgWgpbMzIEkuHey_-SuKM1VVpkSp1KQOT5TjHN66cj2s7Rdl4BB6CJ-NJ6pDSgYHJx0c_Hfvon2XvCd4RjOknPcdhp3aUYcFfZKckz-mWVwy_fK4pPcnehHCPMcsxo6-zEypYVTEqTrNf1_bQ_v7xM7Z-mA7tOMUNcqoGl3rGA2xQsP3BQbpqcG6DOqv9oNxBOeTsaBsUdGJ9QqieUad0a_tFO1B-6aYSjpMdR2jQMMbBuMk2VqNou4WF6CHqFh0n1UcbVbQPgMZWBVhfCnoY57fZK6NcgHdP51n29fPl3f56e3N79WV_cbPVvBB8S2tojKkpxbkuiSJGKFNpTRpeGUYZcFIVzOR5LQzLc84JI3VDSw28MCCgZGfZ-Tp39MNxghBlZ8OytuphmIIkQpQ4p7SoEv34D70fJt-n30lSUcyLUnCR1GZVyybBg5Gjt53ysyRYLunJJT2p5J_0Ev_wNHSqO2ie8d-4EuAr-G4dzP8dJvff7m4v1rmPzOuw-A</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Guo, Baoshan</creator><creator>Lei, Cheng</creator><creator>Kobayashi, Hirofumi</creator><creator>Ito, Takuro</creator><creator>Yalikun, Yaxiaer</creator><creator>Jiang, Yiyue</creator><creator>Tanaka, Yo</creator><creator>Ozeki, Yasuyuki</creator><creator>Goda, Keisuke</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201705</creationdate><title>High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy</title><author>Guo, Baoshan ; Lei, Cheng ; Kobayashi, Hirofumi ; Ito, Takuro ; Yalikun, Yaxiaer ; Jiang, Yiyue ; Tanaka, Yo ; Ozeki, Yasuyuki ; Goda, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4684-2bedffb2205c71a1f8af9cc1d49f323e41963f55b8f35544131bd27ce46fe8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algae</topic><topic>Alternative fuels</topic><topic>Analytical methods</topic><topic>Aviation fuel</topic><topic>Biodiesel fuels</topic><topic>biofuel</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Cell Count</topic><topic>Cell culture</topic><topic>Classification</topic><topic>Climate change</topic><topic>Cytometry</topic><topic>Digital imaging</topic><topic>Esters</topic><topic>Euglena</topic><topic>Euglena gracilis</topic><topic>Fluorescence</topic><topic>Fuel technology</topic><topic>Global warming</topic><topic>High-Throughput Screening Assays - methods</topic><topic>high‐throughput screening</topic><topic>Integration</topic><topic>Learning algorithms</topic><topic>Lipids</topic><topic>Machine Learning</topic><topic>Microalgae - cytology</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Microprocessors</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Opacity</topic><topic>optofluidics</topic><topic>Photosynthesis</topic><topic>quantitative phase imaging</topic><topic>Screening</topic><topic>Single-Cell Analysis - methods</topic><topic>single‐cell analysis</topic><topic>Staining</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Baoshan</creatorcontrib><creatorcontrib>Lei, Cheng</creatorcontrib><creatorcontrib>Kobayashi, Hirofumi</creatorcontrib><creatorcontrib>Ito, Takuro</creatorcontrib><creatorcontrib>Yalikun, Yaxiaer</creatorcontrib><creatorcontrib>Jiang, Yiyue</creatorcontrib><creatorcontrib>Tanaka, Yo</creatorcontrib><creatorcontrib>Ozeki, Yasuyuki</creatorcontrib><creatorcontrib>Goda, Keisuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Baoshan</au><au>Lei, Cheng</au><au>Kobayashi, Hirofumi</au><au>Ito, Takuro</au><au>Yalikun, Yaxiaer</au><au>Jiang, Yiyue</au><au>Tanaka, Yo</au><au>Ozeki, Yasuyuki</au><au>Goda, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy</atitle><jtitle>Cytometry. Part A</jtitle><addtitle>Cytometry A</addtitle><date>2017-05</date><risdate>2017</risdate><volume>91</volume><issue>5</issue><spage>494</spage><epage>502</epage><pages>494-502</pages><issn>1552-4922</issn><eissn>1552-4930</eissn><abstract>The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population‐averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single‐cell resolution in a non‐invasive and interference‐free manner. Here high‐throughput label‐free single‐cell screening of lipid‐producing microalgal cells with optofluidic time‐stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time‐stretch quantitative phase microscope is based on an integration of a hydrodynamic‐focusing microfluidic chip, an optical time‐stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen‐sufficient and nitrogen‐deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae‐based biofuel production. © 2017 International Society for Advancement of Cytometry</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28399328</pmid><doi>10.1002/cyto.a.23084</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1552-4922 |
ispartof | Cytometry. Part A, 2017-05, Vol.91 (5), p.494-502 |
issn | 1552-4922 1552-4930 |
language | eng |
recordid | cdi_proquest_miscellaneous_1887052269 |
source | MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection |
subjects | Algae Alternative fuels Analytical methods Aviation fuel Biodiesel fuels biofuel Biofuels Biomass Carbon dioxide Cell Count Cell culture Classification Climate change Cytometry Digital imaging Esters Euglena Euglena gracilis Fluorescence Fuel technology Global warming High-Throughput Screening Assays - methods high‐throughput screening Integration Learning algorithms Lipids Machine Learning Microalgae - cytology Microfluidic Analytical Techniques - methods Microfluidics Microprocessors Microscopy Microscopy - methods Opacity optofluidics Photosynthesis quantitative phase imaging Screening Single-Cell Analysis - methods single‐cell analysis Staining Sustainable development |
title | High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90throughput,%20label%E2%80%90free,%20single%E2%80%90cell,%20microalgal%20lipid%20screening%20by%20machine%E2%80%90learning%E2%80%90equipped%20optofluidic%20time%E2%80%90stretch%20quantitative%20phase%20microscopy&rft.jtitle=Cytometry.%20Part%20A&rft.au=Guo,%20Baoshan&rft.date=2017-05&rft.volume=91&rft.issue=5&rft.spage=494&rft.epage=502&rft.pages=494-502&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.23084&rft_dat=%3Cproquest_cross%3E1887052269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920467848&rft_id=info:pmid/28399328&rfr_iscdi=true |