High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy

The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae abso...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytometry. Part A 2017-05, Vol.91 (5), p.494-502
Hauptverfasser: Guo, Baoshan, Lei, Cheng, Kobayashi, Hirofumi, Ito, Takuro, Yalikun, Yaxiaer, Jiang, Yiyue, Tanaka, Yo, Ozeki, Yasuyuki, Goda, Keisuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 502
container_issue 5
container_start_page 494
container_title Cytometry. Part A
container_volume 91
creator Guo, Baoshan
Lei, Cheng
Kobayashi, Hirofumi
Ito, Takuro
Yalikun, Yaxiaer
Jiang, Yiyue
Tanaka, Yo
Ozeki, Yasuyuki
Goda, Keisuke
description The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population‐averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single‐cell resolution in a non‐invasive and interference‐free manner. Here high‐throughput label‐free single‐cell screening of lipid‐producing microalgal cells with optofluidic time‐stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time‐stretch quantitative phase microscope is based on an integration of a hydrodynamic‐focusing microfluidic chip, an optical time‐stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen‐sufficient and nitrogen‐deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae‐based biofuel production. © 2017 International Society for Advancement of Cytometry
doi_str_mv 10.1002/cyto.a.23084
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1887052269</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1887052269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4684-2bedffb2205c71a1f8af9cc1d49f323e41963f55b8f35544131bd27ce46fe8e73</originalsourceid><addsrcrecordid>eNp90b1u1TAUB_AIgWgpbMzIEkuHey_-SuKM1VVpkSp1KQOT5TjHN66cj2s7Rdl4BB6CJ-NJ6pDSgYHJx0c_Hfvon2XvCd4RjOknPcdhp3aUYcFfZKckz-mWVwy_fK4pPcnehHCPMcsxo6-zEypYVTEqTrNf1_bQ_v7xM7Z-mA7tOMUNcqoGl3rGA2xQsP3BQbpqcG6DOqv9oNxBOeTsaBsUdGJ9QqieUad0a_tFO1B-6aYSjpMdR2jQMMbBuMk2VqNou4WF6CHqFh0n1UcbVbQPgMZWBVhfCnoY57fZK6NcgHdP51n29fPl3f56e3N79WV_cbPVvBB8S2tojKkpxbkuiSJGKFNpTRpeGUYZcFIVzOR5LQzLc84JI3VDSw28MCCgZGfZ-Tp39MNxghBlZ8OytuphmIIkQpQ4p7SoEv34D70fJt-n30lSUcyLUnCR1GZVyybBg5Gjt53ysyRYLunJJT2p5J_0Ev_wNHSqO2ie8d-4EuAr-G4dzP8dJvff7m4v1rmPzOuw-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920467848</pqid></control><display><type>article</type><title>High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>Alma/SFX Local Collection</source><creator>Guo, Baoshan ; Lei, Cheng ; Kobayashi, Hirofumi ; Ito, Takuro ; Yalikun, Yaxiaer ; Jiang, Yiyue ; Tanaka, Yo ; Ozeki, Yasuyuki ; Goda, Keisuke</creator><creatorcontrib>Guo, Baoshan ; Lei, Cheng ; Kobayashi, Hirofumi ; Ito, Takuro ; Yalikun, Yaxiaer ; Jiang, Yiyue ; Tanaka, Yo ; Ozeki, Yasuyuki ; Goda, Keisuke</creatorcontrib><description>The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population‐averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single‐cell resolution in a non‐invasive and interference‐free manner. Here high‐throughput label‐free single‐cell screening of lipid‐producing microalgal cells with optofluidic time‐stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time‐stretch quantitative phase microscope is based on an integration of a hydrodynamic‐focusing microfluidic chip, an optical time‐stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen‐sufficient and nitrogen‐deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae‐based biofuel production. © 2017 International Society for Advancement of Cytometry</description><identifier>ISSN: 1552-4922</identifier><identifier>EISSN: 1552-4930</identifier><identifier>DOI: 10.1002/cyto.a.23084</identifier><identifier>PMID: 28399328</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Algae ; Alternative fuels ; Analytical methods ; Aviation fuel ; Biodiesel fuels ; biofuel ; Biofuels ; Biomass ; Carbon dioxide ; Cell Count ; Cell culture ; Classification ; Climate change ; Cytometry ; Digital imaging ; Esters ; Euglena ; Euglena gracilis ; Fluorescence ; Fuel technology ; Global warming ; High-Throughput Screening Assays - methods ; high‐throughput screening ; Integration ; Learning algorithms ; Lipids ; Machine Learning ; Microalgae - cytology ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Microprocessors ; Microscopy ; Microscopy - methods ; Opacity ; optofluidics ; Photosynthesis ; quantitative phase imaging ; Screening ; Single-Cell Analysis - methods ; single‐cell analysis ; Staining ; Sustainable development</subject><ispartof>Cytometry. Part A, 2017-05, Vol.91 (5), p.494-502</ispartof><rights>2017 International Society for Advancement of Cytometry</rights><rights>2017 International Society for Advancement of Cytometry.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4684-2bedffb2205c71a1f8af9cc1d49f323e41963f55b8f35544131bd27ce46fe8e73</citedby><cites>FETCH-LOGICAL-c4684-2bedffb2205c71a1f8af9cc1d49f323e41963f55b8f35544131bd27ce46fe8e73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcyto.a.23084$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcyto.a.23084$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,1434,27928,27929,45578,45579,46413,46837</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28399328$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Baoshan</creatorcontrib><creatorcontrib>Lei, Cheng</creatorcontrib><creatorcontrib>Kobayashi, Hirofumi</creatorcontrib><creatorcontrib>Ito, Takuro</creatorcontrib><creatorcontrib>Yalikun, Yaxiaer</creatorcontrib><creatorcontrib>Jiang, Yiyue</creatorcontrib><creatorcontrib>Tanaka, Yo</creatorcontrib><creatorcontrib>Ozeki, Yasuyuki</creatorcontrib><creatorcontrib>Goda, Keisuke</creatorcontrib><title>High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy</title><title>Cytometry. Part A</title><addtitle>Cytometry A</addtitle><description>The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population‐averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single‐cell resolution in a non‐invasive and interference‐free manner. Here high‐throughput label‐free single‐cell screening of lipid‐producing microalgal cells with optofluidic time‐stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time‐stretch quantitative phase microscope is based on an integration of a hydrodynamic‐focusing microfluidic chip, an optical time‐stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen‐sufficient and nitrogen‐deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae‐based biofuel production. © 2017 International Society for Advancement of Cytometry</description><subject>Algae</subject><subject>Alternative fuels</subject><subject>Analytical methods</subject><subject>Aviation fuel</subject><subject>Biodiesel fuels</subject><subject>biofuel</subject><subject>Biofuels</subject><subject>Biomass</subject><subject>Carbon dioxide</subject><subject>Cell Count</subject><subject>Cell culture</subject><subject>Classification</subject><subject>Climate change</subject><subject>Cytometry</subject><subject>Digital imaging</subject><subject>Esters</subject><subject>Euglena</subject><subject>Euglena gracilis</subject><subject>Fluorescence</subject><subject>Fuel technology</subject><subject>Global warming</subject><subject>High-Throughput Screening Assays - methods</subject><subject>high‐throughput screening</subject><subject>Integration</subject><subject>Learning algorithms</subject><subject>Lipids</subject><subject>Machine Learning</subject><subject>Microalgae - cytology</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Microprocessors</subject><subject>Microscopy</subject><subject>Microscopy - methods</subject><subject>Opacity</subject><subject>optofluidics</subject><subject>Photosynthesis</subject><subject>quantitative phase imaging</subject><subject>Screening</subject><subject>Single-Cell Analysis - methods</subject><subject>single‐cell analysis</subject><subject>Staining</subject><subject>Sustainable development</subject><issn>1552-4922</issn><issn>1552-4930</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90b1u1TAUB_AIgWgpbMzIEkuHey_-SuKM1VVpkSp1KQOT5TjHN66cj2s7Rdl4BB6CJ-NJ6pDSgYHJx0c_Hfvon2XvCd4RjOknPcdhp3aUYcFfZKckz-mWVwy_fK4pPcnehHCPMcsxo6-zEypYVTEqTrNf1_bQ_v7xM7Z-mA7tOMUNcqoGl3rGA2xQsP3BQbpqcG6DOqv9oNxBOeTsaBsUdGJ9QqieUad0a_tFO1B-6aYSjpMdR2jQMMbBuMk2VqNou4WF6CHqFh0n1UcbVbQPgMZWBVhfCnoY57fZK6NcgHdP51n29fPl3f56e3N79WV_cbPVvBB8S2tojKkpxbkuiSJGKFNpTRpeGUYZcFIVzOR5LQzLc84JI3VDSw28MCCgZGfZ-Tp39MNxghBlZ8OytuphmIIkQpQ4p7SoEv34D70fJt-n30lSUcyLUnCR1GZVyybBg5Gjt53ysyRYLunJJT2p5J_0Ev_wNHSqO2ie8d-4EuAr-G4dzP8dJvff7m4v1rmPzOuw-A</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Guo, Baoshan</creator><creator>Lei, Cheng</creator><creator>Kobayashi, Hirofumi</creator><creator>Ito, Takuro</creator><creator>Yalikun, Yaxiaer</creator><creator>Jiang, Yiyue</creator><creator>Tanaka, Yo</creator><creator>Ozeki, Yasuyuki</creator><creator>Goda, Keisuke</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201705</creationdate><title>High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy</title><author>Guo, Baoshan ; Lei, Cheng ; Kobayashi, Hirofumi ; Ito, Takuro ; Yalikun, Yaxiaer ; Jiang, Yiyue ; Tanaka, Yo ; Ozeki, Yasuyuki ; Goda, Keisuke</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4684-2bedffb2205c71a1f8af9cc1d49f323e41963f55b8f35544131bd27ce46fe8e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algae</topic><topic>Alternative fuels</topic><topic>Analytical methods</topic><topic>Aviation fuel</topic><topic>Biodiesel fuels</topic><topic>biofuel</topic><topic>Biofuels</topic><topic>Biomass</topic><topic>Carbon dioxide</topic><topic>Cell Count</topic><topic>Cell culture</topic><topic>Classification</topic><topic>Climate change</topic><topic>Cytometry</topic><topic>Digital imaging</topic><topic>Esters</topic><topic>Euglena</topic><topic>Euglena gracilis</topic><topic>Fluorescence</topic><topic>Fuel technology</topic><topic>Global warming</topic><topic>High-Throughput Screening Assays - methods</topic><topic>high‐throughput screening</topic><topic>Integration</topic><topic>Learning algorithms</topic><topic>Lipids</topic><topic>Machine Learning</topic><topic>Microalgae - cytology</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Microprocessors</topic><topic>Microscopy</topic><topic>Microscopy - methods</topic><topic>Opacity</topic><topic>optofluidics</topic><topic>Photosynthesis</topic><topic>quantitative phase imaging</topic><topic>Screening</topic><topic>Single-Cell Analysis - methods</topic><topic>single‐cell analysis</topic><topic>Staining</topic><topic>Sustainable development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Baoshan</creatorcontrib><creatorcontrib>Lei, Cheng</creatorcontrib><creatorcontrib>Kobayashi, Hirofumi</creatorcontrib><creatorcontrib>Ito, Takuro</creatorcontrib><creatorcontrib>Yalikun, Yaxiaer</creatorcontrib><creatorcontrib>Jiang, Yiyue</creatorcontrib><creatorcontrib>Tanaka, Yo</creatorcontrib><creatorcontrib>Ozeki, Yasuyuki</creatorcontrib><creatorcontrib>Goda, Keisuke</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Cytometry. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Baoshan</au><au>Lei, Cheng</au><au>Kobayashi, Hirofumi</au><au>Ito, Takuro</au><au>Yalikun, Yaxiaer</au><au>Jiang, Yiyue</au><au>Tanaka, Yo</au><au>Ozeki, Yasuyuki</au><au>Goda, Keisuke</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy</atitle><jtitle>Cytometry. Part A</jtitle><addtitle>Cytometry A</addtitle><date>2017-05</date><risdate>2017</risdate><volume>91</volume><issue>5</issue><spage>494</spage><epage>502</epage><pages>494-502</pages><issn>1552-4922</issn><eissn>1552-4930</eissn><abstract>The development of reliable, sustainable, and economical sources of alternative fuels to petroleum is required to tackle the global energy crisis. One such alternative is microalgal biofuel, which is expected to play a key role in reducing the detrimental effects of global warming as microalgae absorb atmospheric CO2 via photosynthesis. Unfortunately, conventional analytical methods only provide population‐averaged lipid amounts and fail to characterize a diverse population of microalgal cells with single‐cell resolution in a non‐invasive and interference‐free manner. Here high‐throughput label‐free single‐cell screening of lipid‐producing microalgal cells with optofluidic time‐stretch quantitative phase microscopy was demonstrated. In particular, Euglena gracilis, an attractive microalgal species that produces wax esters (suitable for biodiesel and aviation fuel after refinement), within lipid droplets was investigated. The optofluidic time‐stretch quantitative phase microscope is based on an integration of a hydrodynamic‐focusing microfluidic chip, an optical time‐stretch quantitative phase microscope, and a digital image processor equipped with machine learning. As a result, it provides both the opacity and phase maps of every single cell at a high throughput of 10,000 cells/s, enabling accurate cell classification without the need for fluorescent staining. Specifically, the dataset was used to characterize heterogeneous populations of E. gracilis cells under two different culture conditions (nitrogen‐sufficient and nitrogen‐deficient) and achieve the cell classification with an error rate of only 2.15%. The method holds promise as an effective analytical tool for microalgae‐based biofuel production. © 2017 International Society for Advancement of Cytometry</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28399328</pmid><doi>10.1002/cyto.a.23084</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1552-4922
ispartof Cytometry. Part A, 2017-05, Vol.91 (5), p.494-502
issn 1552-4922
1552-4930
language eng
recordid cdi_proquest_miscellaneous_1887052269
source MEDLINE; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); Alma/SFX Local Collection
subjects Algae
Alternative fuels
Analytical methods
Aviation fuel
Biodiesel fuels
biofuel
Biofuels
Biomass
Carbon dioxide
Cell Count
Cell culture
Classification
Climate change
Cytometry
Digital imaging
Esters
Euglena
Euglena gracilis
Fluorescence
Fuel technology
Global warming
High-Throughput Screening Assays - methods
high‐throughput screening
Integration
Learning algorithms
Lipids
Machine Learning
Microalgae - cytology
Microfluidic Analytical Techniques - methods
Microfluidics
Microprocessors
Microscopy
Microscopy - methods
Opacity
optofluidics
Photosynthesis
quantitative phase imaging
Screening
Single-Cell Analysis - methods
single‐cell analysis
Staining
Sustainable development
title High‐throughput, label‐free, single‐cell, microalgal lipid screening by machine‐learning‐equipped optofluidic time‐stretch quantitative phase microscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T03%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90throughput,%20label%E2%80%90free,%20single%E2%80%90cell,%20microalgal%20lipid%20screening%20by%20machine%E2%80%90learning%E2%80%90equipped%20optofluidic%20time%E2%80%90stretch%20quantitative%20phase%20microscopy&rft.jtitle=Cytometry.%20Part%20A&rft.au=Guo,%20Baoshan&rft.date=2017-05&rft.volume=91&rft.issue=5&rft.spage=494&rft.epage=502&rft.pages=494-502&rft.issn=1552-4922&rft.eissn=1552-4930&rft_id=info:doi/10.1002/cyto.a.23084&rft_dat=%3Cproquest_cross%3E1887052269%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920467848&rft_id=info:pmid/28399328&rfr_iscdi=true