Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families

Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal reces...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular psychiatry 2018-04, Vol.23 (4), p.973-984
Hauptverfasser: Harripaul, R, Vasli, N, Mikhailov, A, Rafiq, M A, Mittal, K, Windpassinger, C, Sheikh, T I, Noor, A, Mahmood, H, Downey, S, Johnson, M, Vleuten, K, Bell, L, Ilyas, M, Khan, F S, Khan, V, Moradi, M, Ayaz, M, Naeem, F, Heidari, A, Ahmed, I, Ghadami, S, Agha, Z, Zeinali, S, Qamar, R, Mozhdehipanah, H, John, P, Mir, A, Ansar, M, French, L, Ayub, M, Vincent, J B
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 984
container_issue 4
container_start_page 973
container_title Molecular psychiatry
container_volume 23
creator Harripaul, R
Vasli, N
Mikhailov, A
Rafiq, M A
Mittal, K
Windpassinger, C
Sheikh, T I
Noor, A
Mahmood, H
Downey, S
Johnson, M
Vleuten, K
Bell, L
Ilyas, M
Khan, F S
Khan, V
Moradi, M
Ayaz, M
Naeem, F
Heidari, A
Ahmed, I
Ghadami, S
Agha, Z
Zeinali, S
Qamar, R
Mozhdehipanah, H
John, P
Mir, A
Ansar, M
French, L
Ayub, M
Vincent, J B
description Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations ( ABI2 , MAPK8 , MPDZ, PIDD1 , SLAIN1 , TBC1D23 , TRAPPC6B , UBA7 and USP44 ), and missense mutations include the first reports of variants in BDNF or TET1 associated with ID. The genes identified also showed overlap with de novo gene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.
doi_str_mv 10.1038/mp.2017.60
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1886752578</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A531833453</galeid><sourcerecordid>A531833453</sourcerecordid><originalsourceid>FETCH-LOGICAL-c520t-3f0be0cc7cb1a9e3a10bf7a2ea1af92bc845711b920aee4367ca13d434b749c63</originalsourceid><addsrcrecordid>eNptks1u1TAQhSMEoqWw4QGQJTYIdC92HMdOd1XFn1TEBtbRxJlErmI72EnFfRselQm3UIEqL2zNfD4-M-OieC74XnBp3vp5X3Kh9zV_UJyKStc7pbR5SGepml0lTHVSPMn5mvMtqR4XJ6WRjTbSnBY_P8M8uzAyWJeYo4eJJbSYs7tB5sKC04R2WSncuwydm9xyOGc2-s4F7Jl3NkVICQ4MQs_wR_TIMn5fMdhN1fUYFjc4zKysWYg3ODFLpOthQTZioIQLTDQlaYYMYVxJN66ZDeDpMcxPi0cDTBmf3e5nxbf3775eftxdffnw6fLiamdVyZedHHiH3FptOwENShC8GzSUCAKGpuysqZQWomtKDoiVrLUFIftKVp2uGlvLs-LVUXdOkeznpfUuWyoffvtphTG1ViU1ltCX_6HXcU2B3LU0h1oJYps7aoQJWxeGuCSwm2h7oaQwUlZKErW_h6LVI_U2Bhwcxf-58Pp4gRqfc8KhnZPzkA6t4O32HVo_bzZ0W3OCX9w6XTuP_V_0z_wJeHMEMqXCiOmulHvkfgFjs8Ab</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2016511889</pqid></control><display><type>article</type><title>Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Harripaul, R ; Vasli, N ; Mikhailov, A ; Rafiq, M A ; Mittal, K ; Windpassinger, C ; Sheikh, T I ; Noor, A ; Mahmood, H ; Downey, S ; Johnson, M ; Vleuten, K ; Bell, L ; Ilyas, M ; Khan, F S ; Khan, V ; Moradi, M ; Ayaz, M ; Naeem, F ; Heidari, A ; Ahmed, I ; Ghadami, S ; Agha, Z ; Zeinali, S ; Qamar, R ; Mozhdehipanah, H ; John, P ; Mir, A ; Ansar, M ; French, L ; Ayub, M ; Vincent, J B</creator><creatorcontrib>Harripaul, R ; Vasli, N ; Mikhailov, A ; Rafiq, M A ; Mittal, K ; Windpassinger, C ; Sheikh, T I ; Noor, A ; Mahmood, H ; Downey, S ; Johnson, M ; Vleuten, K ; Bell, L ; Ilyas, M ; Khan, F S ; Khan, V ; Moradi, M ; Ayaz, M ; Naeem, F ; Heidari, A ; Ahmed, I ; Ghadami, S ; Agha, Z ; Zeinali, S ; Qamar, R ; Mozhdehipanah, H ; John, P ; Mir, A ; Ansar, M ; French, L ; Ayub, M ; Vincent, J B</creatorcontrib><description>Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations ( ABI2 , MAPK8 , MPDZ, PIDD1 , SLAIN1 , TBC1D23 , TRAPPC6B , UBA7 and USP44 ), and missense mutations include the first reports of variants in BDNF or TET1 associated with ID. The genes identified also showed overlap with de novo gene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/mp.2017.60</identifier><identifier>PMID: 28397838</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>45/22 ; 45/61 ; 692/53/2421 ; Adult ; Behavioral Sciences ; Biological Psychology ; Brain-derived neurotrophic factor ; Chromosome Mapping - methods ; Consanguinity ; Copy number ; Copy number variations ; DNA Copy Number Variations ; DNA microarrays ; Exome sequencing ; Family ; Female ; Gene mapping ; Gene mutation ; Genes ; Genes, Recessive ; Genetic aspects ; Genetic Heterogeneity ; Genomes ; Genotyping ; Homozygosity ; Homozygote ; Humans ; Intellectual disabilities ; Intellectual Disability - genetics ; Intellectual Disability - metabolism ; Iran ; Loss of Function Mutation ; Male ; Medicine ; Medicine &amp; Public Health ; Mental disorders ; Microarray Analysis - methods ; Middle Aged ; Missense mutation ; Mutation ; Neurosciences ; original-article ; Pakistan ; Pedigree ; Pharmacotherapy ; Psychiatry ; Transcription ; Whole Exome Sequencing - methods</subject><ispartof>Molecular psychiatry, 2018-04, Vol.23 (4), p.973-984</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Apr 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c520t-3f0be0cc7cb1a9e3a10bf7a2ea1af92bc845711b920aee4367ca13d434b749c63</citedby><cites>FETCH-LOGICAL-c520t-3f0be0cc7cb1a9e3a10bf7a2ea1af92bc845711b920aee4367ca13d434b749c63</cites><orcidid>0000-0001-8948-5830</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/mp.2017.60$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/mp.2017.60$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28397838$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Harripaul, R</creatorcontrib><creatorcontrib>Vasli, N</creatorcontrib><creatorcontrib>Mikhailov, A</creatorcontrib><creatorcontrib>Rafiq, M A</creatorcontrib><creatorcontrib>Mittal, K</creatorcontrib><creatorcontrib>Windpassinger, C</creatorcontrib><creatorcontrib>Sheikh, T I</creatorcontrib><creatorcontrib>Noor, A</creatorcontrib><creatorcontrib>Mahmood, H</creatorcontrib><creatorcontrib>Downey, S</creatorcontrib><creatorcontrib>Johnson, M</creatorcontrib><creatorcontrib>Vleuten, K</creatorcontrib><creatorcontrib>Bell, L</creatorcontrib><creatorcontrib>Ilyas, M</creatorcontrib><creatorcontrib>Khan, F S</creatorcontrib><creatorcontrib>Khan, V</creatorcontrib><creatorcontrib>Moradi, M</creatorcontrib><creatorcontrib>Ayaz, M</creatorcontrib><creatorcontrib>Naeem, F</creatorcontrib><creatorcontrib>Heidari, A</creatorcontrib><creatorcontrib>Ahmed, I</creatorcontrib><creatorcontrib>Ghadami, S</creatorcontrib><creatorcontrib>Agha, Z</creatorcontrib><creatorcontrib>Zeinali, S</creatorcontrib><creatorcontrib>Qamar, R</creatorcontrib><creatorcontrib>Mozhdehipanah, H</creatorcontrib><creatorcontrib>John, P</creatorcontrib><creatorcontrib>Mir, A</creatorcontrib><creatorcontrib>Ansar, M</creatorcontrib><creatorcontrib>French, L</creatorcontrib><creatorcontrib>Ayub, M</creatorcontrib><creatorcontrib>Vincent, J B</creatorcontrib><title>Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations ( ABI2 , MAPK8 , MPDZ, PIDD1 , SLAIN1 , TBC1D23 , TRAPPC6B , UBA7 and USP44 ), and missense mutations include the first reports of variants in BDNF or TET1 associated with ID. The genes identified also showed overlap with de novo gene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.</description><subject>45/22</subject><subject>45/61</subject><subject>692/53/2421</subject><subject>Adult</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Brain-derived neurotrophic factor</subject><subject>Chromosome Mapping - methods</subject><subject>Consanguinity</subject><subject>Copy number</subject><subject>Copy number variations</subject><subject>DNA Copy Number Variations</subject><subject>DNA microarrays</subject><subject>Exome sequencing</subject><subject>Family</subject><subject>Female</subject><subject>Gene mapping</subject><subject>Gene mutation</subject><subject>Genes</subject><subject>Genes, Recessive</subject><subject>Genetic aspects</subject><subject>Genetic Heterogeneity</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Homozygosity</subject><subject>Homozygote</subject><subject>Humans</subject><subject>Intellectual disabilities</subject><subject>Intellectual Disability - genetics</subject><subject>Intellectual Disability - metabolism</subject><subject>Iran</subject><subject>Loss of Function Mutation</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Mental disorders</subject><subject>Microarray Analysis - methods</subject><subject>Middle Aged</subject><subject>Missense mutation</subject><subject>Mutation</subject><subject>Neurosciences</subject><subject>original-article</subject><subject>Pakistan</subject><subject>Pedigree</subject><subject>Pharmacotherapy</subject><subject>Psychiatry</subject><subject>Transcription</subject><subject>Whole Exome Sequencing - methods</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNptks1u1TAQhSMEoqWw4QGQJTYIdC92HMdOd1XFn1TEBtbRxJlErmI72EnFfRselQm3UIEqL2zNfD4-M-OieC74XnBp3vp5X3Kh9zV_UJyKStc7pbR5SGepml0lTHVSPMn5mvMtqR4XJ6WRjTbSnBY_P8M8uzAyWJeYo4eJJbSYs7tB5sKC04R2WSncuwydm9xyOGc2-s4F7Jl3NkVICQ4MQs_wR_TIMn5fMdhN1fUYFjc4zKysWYg3ODFLpOthQTZioIQLTDQlaYYMYVxJN66ZDeDpMcxPi0cDTBmf3e5nxbf3775eftxdffnw6fLiamdVyZedHHiH3FptOwENShC8GzSUCAKGpuysqZQWomtKDoiVrLUFIftKVp2uGlvLs-LVUXdOkeznpfUuWyoffvtphTG1ViU1ltCX_6HXcU2B3LU0h1oJYps7aoQJWxeGuCSwm2h7oaQwUlZKErW_h6LVI_U2Bhwcxf-58Pp4gRqfc8KhnZPzkA6t4O32HVo_bzZ0W3OCX9w6XTuP_V_0z_wJeHMEMqXCiOmulHvkfgFjs8Ab</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Harripaul, R</creator><creator>Vasli, N</creator><creator>Mikhailov, A</creator><creator>Rafiq, M A</creator><creator>Mittal, K</creator><creator>Windpassinger, C</creator><creator>Sheikh, T I</creator><creator>Noor, A</creator><creator>Mahmood, H</creator><creator>Downey, S</creator><creator>Johnson, M</creator><creator>Vleuten, K</creator><creator>Bell, L</creator><creator>Ilyas, M</creator><creator>Khan, F S</creator><creator>Khan, V</creator><creator>Moradi, M</creator><creator>Ayaz, M</creator><creator>Naeem, F</creator><creator>Heidari, A</creator><creator>Ahmed, I</creator><creator>Ghadami, S</creator><creator>Agha, Z</creator><creator>Zeinali, S</creator><creator>Qamar, R</creator><creator>Mozhdehipanah, H</creator><creator>John, P</creator><creator>Mir, A</creator><creator>Ansar, M</creator><creator>French, L</creator><creator>Ayub, M</creator><creator>Vincent, J B</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8948-5830</orcidid></search><sort><creationdate>20180401</creationdate><title>Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families</title><author>Harripaul, R ; Vasli, N ; Mikhailov, A ; Rafiq, M A ; Mittal, K ; Windpassinger, C ; Sheikh, T I ; Noor, A ; Mahmood, H ; Downey, S ; Johnson, M ; Vleuten, K ; Bell, L ; Ilyas, M ; Khan, F S ; Khan, V ; Moradi, M ; Ayaz, M ; Naeem, F ; Heidari, A ; Ahmed, I ; Ghadami, S ; Agha, Z ; Zeinali, S ; Qamar, R ; Mozhdehipanah, H ; John, P ; Mir, A ; Ansar, M ; French, L ; Ayub, M ; Vincent, J B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c520t-3f0be0cc7cb1a9e3a10bf7a2ea1af92bc845711b920aee4367ca13d434b749c63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>45/22</topic><topic>45/61</topic><topic>692/53/2421</topic><topic>Adult</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Brain-derived neurotrophic factor</topic><topic>Chromosome Mapping - methods</topic><topic>Consanguinity</topic><topic>Copy number</topic><topic>Copy number variations</topic><topic>DNA Copy Number Variations</topic><topic>DNA microarrays</topic><topic>Exome sequencing</topic><topic>Family</topic><topic>Female</topic><topic>Gene mapping</topic><topic>Gene mutation</topic><topic>Genes</topic><topic>Genes, Recessive</topic><topic>Genetic aspects</topic><topic>Genetic Heterogeneity</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Homozygosity</topic><topic>Homozygote</topic><topic>Humans</topic><topic>Intellectual disabilities</topic><topic>Intellectual Disability - genetics</topic><topic>Intellectual Disability - metabolism</topic><topic>Iran</topic><topic>Loss of Function Mutation</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Mental disorders</topic><topic>Microarray Analysis - methods</topic><topic>Middle Aged</topic><topic>Missense mutation</topic><topic>Mutation</topic><topic>Neurosciences</topic><topic>original-article</topic><topic>Pakistan</topic><topic>Pedigree</topic><topic>Pharmacotherapy</topic><topic>Psychiatry</topic><topic>Transcription</topic><topic>Whole Exome Sequencing - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Harripaul, R</creatorcontrib><creatorcontrib>Vasli, N</creatorcontrib><creatorcontrib>Mikhailov, A</creatorcontrib><creatorcontrib>Rafiq, M A</creatorcontrib><creatorcontrib>Mittal, K</creatorcontrib><creatorcontrib>Windpassinger, C</creatorcontrib><creatorcontrib>Sheikh, T I</creatorcontrib><creatorcontrib>Noor, A</creatorcontrib><creatorcontrib>Mahmood, H</creatorcontrib><creatorcontrib>Downey, S</creatorcontrib><creatorcontrib>Johnson, M</creatorcontrib><creatorcontrib>Vleuten, K</creatorcontrib><creatorcontrib>Bell, L</creatorcontrib><creatorcontrib>Ilyas, M</creatorcontrib><creatorcontrib>Khan, F S</creatorcontrib><creatorcontrib>Khan, V</creatorcontrib><creatorcontrib>Moradi, M</creatorcontrib><creatorcontrib>Ayaz, M</creatorcontrib><creatorcontrib>Naeem, F</creatorcontrib><creatorcontrib>Heidari, A</creatorcontrib><creatorcontrib>Ahmed, I</creatorcontrib><creatorcontrib>Ghadami, S</creatorcontrib><creatorcontrib>Agha, Z</creatorcontrib><creatorcontrib>Zeinali, S</creatorcontrib><creatorcontrib>Qamar, R</creatorcontrib><creatorcontrib>Mozhdehipanah, H</creatorcontrib><creatorcontrib>John, P</creatorcontrib><creatorcontrib>Mir, A</creatorcontrib><creatorcontrib>Ansar, M</creatorcontrib><creatorcontrib>French, L</creatorcontrib><creatorcontrib>Ayub, M</creatorcontrib><creatorcontrib>Vincent, J B</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Harripaul, R</au><au>Vasli, N</au><au>Mikhailov, A</au><au>Rafiq, M A</au><au>Mittal, K</au><au>Windpassinger, C</au><au>Sheikh, T I</au><au>Noor, A</au><au>Mahmood, H</au><au>Downey, S</au><au>Johnson, M</au><au>Vleuten, K</au><au>Bell, L</au><au>Ilyas, M</au><au>Khan, F S</au><au>Khan, V</au><au>Moradi, M</au><au>Ayaz, M</au><au>Naeem, F</au><au>Heidari, A</au><au>Ahmed, I</au><au>Ghadami, S</au><au>Agha, Z</au><au>Zeinali, S</au><au>Qamar, R</au><au>Mozhdehipanah, H</au><au>John, P</au><au>Mir, A</au><au>Ansar, M</au><au>French, L</au><au>Ayub, M</au><au>Vincent, J B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>23</volume><issue>4</issue><spage>973</spage><epage>984</epage><pages>973-984</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Approximately 1% of the global population is affected by intellectual disability (ID), and the majority receive no molecular diagnosis. Previous studies have indicated high levels of genetic heterogeneity, with estimates of more than 2500 autosomal ID genes, the majority of which are autosomal recessive (AR). Here, we combined microarray genotyping, homozygosity-by-descent (HBD) mapping, copy number variation (CNV) analysis, and whole exome sequencing (WES) to identify disease genes/mutations in 192 multiplex Pakistani and Iranian consanguineous families with non-syndromic ID. We identified definite or candidate mutations (or CNVs) in 51% of families in 72 different genes, including 26 not previously reported for ARID. The new ARID genes include nine with loss-of-function mutations ( ABI2 , MAPK8 , MPDZ, PIDD1 , SLAIN1 , TBC1D23 , TRAPPC6B , UBA7 and USP44 ), and missense mutations include the first reports of variants in BDNF or TET1 associated with ID. The genes identified also showed overlap with de novo gene sets for other neuropsychiatric disorders. Transcriptional studies showed prominent expression in the prenatal brain. The high yield of AR mutations for ID indicated that this approach has excellent clinical potential and should inform clinical diagnostics, including clinical whole exome and genome sequencing, for populations in which consanguinity is common. As with other AR disorders, the relevance will also apply to outbred populations.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>28397838</pmid><doi>10.1038/mp.2017.60</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-8948-5830</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1359-4184
ispartof Molecular psychiatry, 2018-04, Vol.23 (4), p.973-984
issn 1359-4184
1476-5578
language eng
recordid cdi_proquest_miscellaneous_1886752578
source MEDLINE; SpringerLink Journals
subjects 45/22
45/61
692/53/2421
Adult
Behavioral Sciences
Biological Psychology
Brain-derived neurotrophic factor
Chromosome Mapping - methods
Consanguinity
Copy number
Copy number variations
DNA Copy Number Variations
DNA microarrays
Exome sequencing
Family
Female
Gene mapping
Gene mutation
Genes
Genes, Recessive
Genetic aspects
Genetic Heterogeneity
Genomes
Genotyping
Homozygosity
Homozygote
Humans
Intellectual disabilities
Intellectual Disability - genetics
Intellectual Disability - metabolism
Iran
Loss of Function Mutation
Male
Medicine
Medicine & Public Health
Mental disorders
Microarray Analysis - methods
Middle Aged
Missense mutation
Mutation
Neurosciences
original-article
Pakistan
Pedigree
Pharmacotherapy
Psychiatry
Transcription
Whole Exome Sequencing - methods
title Mapping autosomal recessive intellectual disability: combined microarray and exome sequencing identifies 26 novel candidate genes in 192 consanguineous families
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T20%3A43%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mapping%20autosomal%20recessive%20intellectual%20disability:%20combined%20microarray%20and%20exome%20sequencing%20identifies%2026%20novel%20candidate%20genes%20in%20192%20consanguineous%20families&rft.jtitle=Molecular%20psychiatry&rft.au=Harripaul,%20R&rft.date=2018-04-01&rft.volume=23&rft.issue=4&rft.spage=973&rft.epage=984&rft.pages=973-984&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/mp.2017.60&rft_dat=%3Cgale_proqu%3EA531833453%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2016511889&rft_id=info:pmid/28397838&rft_galeid=A531833453&rfr_iscdi=true