Quantitative Proteomics Analysis of Developmental Reprogramming in Protoplasts of the Moss Physcomitrella patens
The moss Physcomitrella patens is a model system for studying Plant developmental processes. To better understand the biochemical and physiological changes involved in developmental reprogramming, we conducted a quantitative proteomics analysis for protonemata, protoplasts made therefrom and protopl...
Gespeichert in:
Veröffentlicht in: | Plant and cell physiology 2017-05, Vol.58 (5), p.946-961 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The moss Physcomitrella patens is a model system for studying Plant developmental processes. To better understand the biochemical and physiological changes involved in developmental reprogramming, we conducted a quantitative proteomics analysis for protonemata, protoplasts made therefrom and protoplasts regenerated for 2 d. Using an iTRAQ peptide labeling strategy and liquid chromatography-tandem mass spectrometry (LC-MS/MS), >3,000 peptides and 1,000 proteins were quantified. Of these, 162 proteins were identified as having differential abundances during developmental reprogramming. These proteins were involved in various biological functions, such as defense, energy production, translation, metabolism, protein destination and storage, transcription, transport, cell growth/division, cell structure and signal transduction. Of these, the proteins involved in energy production and translation increased in abundance, while many of the metabolism and defense proteins decreased in abundance. In addition, most of the cell growth/division, protein stability and cell structure proteins were also down-regulated. This is the first report on the metabolic changes involved in developmental reprogramming in protoplasts. The significance of metabolic networks in developmental programming is beginning to emerge. Our study suggested that stress signals, energy metabolism and ribosomal proteins are pivotal components during developmental programming. |
---|---|
ISSN: | 0032-0781 1471-9053 |
DOI: | 10.1093/pcp/pcx039 |