Microbial fuel cell characterisation and evaluation of Lysinibacillus macroides MFC02 electrigenic capability

Microbial fuel cell (MFC) is the most prominent research field due to its capability to generate electricity by utilizing the renewable sources. In the present study, Two MFC designs namely, H type-Microbial fuel cell (HT-MFC) and U type-Microbial fuel cell (UT-MFC) were constructed based on standar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World journal of microbiology & biotechnology 2017-05, Vol.33 (5), p.91-91, Article 91
Hauptverfasser: Uma Vanitha, Murugan, Natarajan, Muthusamy, Sridhar, Harikrishnamoorthy, Umamaheswari, Sankaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 91
container_issue 5
container_start_page 91
container_title World journal of microbiology & biotechnology
container_volume 33
creator Uma Vanitha, Murugan
Natarajan, Muthusamy
Sridhar, Harikrishnamoorthy
Umamaheswari, Sankaran
description Microbial fuel cell (MFC) is the most prominent research field due to its capability to generate electricity by utilizing the renewable sources. In the present study, Two MFC designs namely, H type-Microbial fuel cell (HT-MFC) and U type-Microbial fuel cell (UT-MFC) were constructed based on standardized H shaped anode and cathode compartment as well as U shaped anode and cathode compartments, respectively. In order to lower the cost for MFC construction, Pencil graphite lead was used as electrode and salt agar as Proton exchange membrane. Results inferred that newly constructed UT-MFC showed high electron production when compared to the HT-MFC. UT-MFC displayed an output of about 377 ± 18.85 mV (millivolts); whereas HT-MFC rendered only 237 ± 11.85 mV (millivolts) of power generation, which might be due to the low internal resistance. By increasing the number of cathode in UT-MFC, power production was increased upto 313 ± 15.65 mV in Open circuit voltage (OCV). Electrogenic bacteria namely, Lysinibacillus macroides (Acc. No. KX011879) rendered enriched power generation. The attachment of bacteria as a biofilm on pencil graphite lead was analyzed using fluorescent microscope and Scanning Electron Microscope (SEM). Based on our findings, it was observed that UT-MFC has a tendency to produce high electron generation using pencil graphite lead as the electrode material.
doi_str_mv 10.1007/s11274-017-2252-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1886349831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1886349831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-9d21201e505207041d4900600d16ba2972592478e9ccf9201e9862c3b15f04f43</originalsourceid><addsrcrecordid>eNp1kc1q3DAUhUVJaSZpHyCbIMgmG6f36se2lmXINIUJ2bRrIctyqiDbE8kOzNtXxkkpgW4khL5zro4OIRcINwhQfU2IrBIFYFUwJlnBP5ANyooXoCp2QjagpCq4UvyUnKX0BJBVin8ip6zmCmWJG9LfexvHxptAu9kFal3Iy28TjZ1c9MlMfhyoGVrqXkyY1-PY0f0x-cE3xvoQ5kR7k1186xK9322BURecnaJ_dIO31JqDaXzw0_Ez-diZkNyX1_2c_Nrd_tzeFfuH7z-23_aFFaCmQrUMGaCTIBlUILAVCqAEaLFsDMvhpGKiqp2ytlMLqeqSWd6g7EB0gp-T69X3EMfn2aVJ9z4t0czgxjlprOuSC1VzzOjVO_RpnOOQX7dQUqCESmYKVyrHTCm6Th-i7008agS9dKHXLnTuQi9daJ41l6_Oc9O79q_i7fMzwFYg5avh0cV_Rv_X9Q9zcJLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1885415075</pqid></control><display><type>article</type><title>Microbial fuel cell characterisation and evaluation of Lysinibacillus macroides MFC02 electrigenic capability</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Uma Vanitha, Murugan ; Natarajan, Muthusamy ; Sridhar, Harikrishnamoorthy ; Umamaheswari, Sankaran</creator><creatorcontrib>Uma Vanitha, Murugan ; Natarajan, Muthusamy ; Sridhar, Harikrishnamoorthy ; Umamaheswari, Sankaran</creatorcontrib><description>Microbial fuel cell (MFC) is the most prominent research field due to its capability to generate electricity by utilizing the renewable sources. In the present study, Two MFC designs namely, H type-Microbial fuel cell (HT-MFC) and U type-Microbial fuel cell (UT-MFC) were constructed based on standardized H shaped anode and cathode compartment as well as U shaped anode and cathode compartments, respectively. In order to lower the cost for MFC construction, Pencil graphite lead was used as electrode and salt agar as Proton exchange membrane. Results inferred that newly constructed UT-MFC showed high electron production when compared to the HT-MFC. UT-MFC displayed an output of about 377 ± 18.85 mV (millivolts); whereas HT-MFC rendered only 237 ± 11.85 mV (millivolts) of power generation, which might be due to the low internal resistance. By increasing the number of cathode in UT-MFC, power production was increased upto 313 ± 15.65 mV in Open circuit voltage (OCV). Electrogenic bacteria namely, Lysinibacillus macroides (Acc. No. KX011879) rendered enriched power generation. The attachment of bacteria as a biofilm on pencil graphite lead was analyzed using fluorescent microscope and Scanning Electron Microscope (SEM). Based on our findings, it was observed that UT-MFC has a tendency to produce high electron generation using pencil graphite lead as the electrode material.</description><identifier>ISSN: 0959-3993</identifier><identifier>EISSN: 1573-0972</identifier><identifier>DOI: 10.1007/s11274-017-2252-3</identifier><identifier>PMID: 28391561</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Agar ; Anodes ; Applied Microbiology ; Bacillaceae - classification ; Bacillaceae - isolation &amp; purification ; Bacillaceae - physiology ; Bacteria ; Biochemical fuel cells ; Biochemistry ; Bioelectric Energy Sources - microbiology ; Biofilms ; Biomedical and Life Sciences ; Biotechnology ; Cathodes ; Electric power generation ; Electricity generation ; Electrode materials ; Electrodes ; Electron microscopes ; Environmental Engineering/Biotechnology ; Fluorescence ; Fuel cells ; Fuel technology ; Graphite ; Graphite - chemistry ; Life Sciences ; Lysinibacillus ; Microbiology ; Microorganisms ; Open circuit voltage ; Original Paper ; Phylogeny ; Sewage treatment plants</subject><ispartof>World journal of microbiology &amp; biotechnology, 2017-05, Vol.33 (5), p.91-91, Article 91</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>World Journal of Microbiology and Biotechnology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-9d21201e505207041d4900600d16ba2972592478e9ccf9201e9862c3b15f04f43</citedby><cites>FETCH-LOGICAL-c409t-9d21201e505207041d4900600d16ba2972592478e9ccf9201e9862c3b15f04f43</cites><orcidid>0000-0002-5910-5881</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11274-017-2252-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11274-017-2252-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28391561$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Uma Vanitha, Murugan</creatorcontrib><creatorcontrib>Natarajan, Muthusamy</creatorcontrib><creatorcontrib>Sridhar, Harikrishnamoorthy</creatorcontrib><creatorcontrib>Umamaheswari, Sankaran</creatorcontrib><title>Microbial fuel cell characterisation and evaluation of Lysinibacillus macroides MFC02 electrigenic capability</title><title>World journal of microbiology &amp; biotechnology</title><addtitle>World J Microbiol Biotechnol</addtitle><addtitle>World J Microbiol Biotechnol</addtitle><description>Microbial fuel cell (MFC) is the most prominent research field due to its capability to generate electricity by utilizing the renewable sources. In the present study, Two MFC designs namely, H type-Microbial fuel cell (HT-MFC) and U type-Microbial fuel cell (UT-MFC) were constructed based on standardized H shaped anode and cathode compartment as well as U shaped anode and cathode compartments, respectively. In order to lower the cost for MFC construction, Pencil graphite lead was used as electrode and salt agar as Proton exchange membrane. Results inferred that newly constructed UT-MFC showed high electron production when compared to the HT-MFC. UT-MFC displayed an output of about 377 ± 18.85 mV (millivolts); whereas HT-MFC rendered only 237 ± 11.85 mV (millivolts) of power generation, which might be due to the low internal resistance. By increasing the number of cathode in UT-MFC, power production was increased upto 313 ± 15.65 mV in Open circuit voltage (OCV). Electrogenic bacteria namely, Lysinibacillus macroides (Acc. No. KX011879) rendered enriched power generation. The attachment of bacteria as a biofilm on pencil graphite lead was analyzed using fluorescent microscope and Scanning Electron Microscope (SEM). Based on our findings, it was observed that UT-MFC has a tendency to produce high electron generation using pencil graphite lead as the electrode material.</description><subject>Agar</subject><subject>Anodes</subject><subject>Applied Microbiology</subject><subject>Bacillaceae - classification</subject><subject>Bacillaceae - isolation &amp; purification</subject><subject>Bacillaceae - physiology</subject><subject>Bacteria</subject><subject>Biochemical fuel cells</subject><subject>Biochemistry</subject><subject>Bioelectric Energy Sources - microbiology</subject><subject>Biofilms</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Cathodes</subject><subject>Electric power generation</subject><subject>Electricity generation</subject><subject>Electrode materials</subject><subject>Electrodes</subject><subject>Electron microscopes</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Fluorescence</subject><subject>Fuel cells</subject><subject>Fuel technology</subject><subject>Graphite</subject><subject>Graphite - chemistry</subject><subject>Life Sciences</subject><subject>Lysinibacillus</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Open circuit voltage</subject><subject>Original Paper</subject><subject>Phylogeny</subject><subject>Sewage treatment plants</subject><issn>0959-3993</issn><issn>1573-0972</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kc1q3DAUhUVJaSZpHyCbIMgmG6f36se2lmXINIUJ2bRrIctyqiDbE8kOzNtXxkkpgW4khL5zro4OIRcINwhQfU2IrBIFYFUwJlnBP5ANyooXoCp2QjagpCq4UvyUnKX0BJBVin8ip6zmCmWJG9LfexvHxptAu9kFal3Iy28TjZ1c9MlMfhyoGVrqXkyY1-PY0f0x-cE3xvoQ5kR7k1186xK9322BURecnaJ_dIO31JqDaXzw0_Ez-diZkNyX1_2c_Nrd_tzeFfuH7z-23_aFFaCmQrUMGaCTIBlUILAVCqAEaLFsDMvhpGKiqp2ytlMLqeqSWd6g7EB0gp-T69X3EMfn2aVJ9z4t0czgxjlprOuSC1VzzOjVO_RpnOOQX7dQUqCESmYKVyrHTCm6Th-i7008agS9dKHXLnTuQi9daJ41l6_Oc9O79q_i7fMzwFYg5avh0cV_Rv_X9Q9zcJLg</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Uma Vanitha, Murugan</creator><creator>Natarajan, Muthusamy</creator><creator>Sridhar, Harikrishnamoorthy</creator><creator>Umamaheswari, Sankaran</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7U9</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>L7M</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5910-5881</orcidid></search><sort><creationdate>20170501</creationdate><title>Microbial fuel cell characterisation and evaluation of Lysinibacillus macroides MFC02 electrigenic capability</title><author>Uma Vanitha, Murugan ; Natarajan, Muthusamy ; Sridhar, Harikrishnamoorthy ; Umamaheswari, Sankaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-9d21201e505207041d4900600d16ba2972592478e9ccf9201e9862c3b15f04f43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agar</topic><topic>Anodes</topic><topic>Applied Microbiology</topic><topic>Bacillaceae - classification</topic><topic>Bacillaceae - isolation &amp; purification</topic><topic>Bacillaceae - physiology</topic><topic>Bacteria</topic><topic>Biochemical fuel cells</topic><topic>Biochemistry</topic><topic>Bioelectric Energy Sources - microbiology</topic><topic>Biofilms</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Cathodes</topic><topic>Electric power generation</topic><topic>Electricity generation</topic><topic>Electrode materials</topic><topic>Electrodes</topic><topic>Electron microscopes</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Fluorescence</topic><topic>Fuel cells</topic><topic>Fuel technology</topic><topic>Graphite</topic><topic>Graphite - chemistry</topic><topic>Life Sciences</topic><topic>Lysinibacillus</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Open circuit voltage</topic><topic>Original Paper</topic><topic>Phylogeny</topic><topic>Sewage treatment plants</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Uma Vanitha, Murugan</creatorcontrib><creatorcontrib>Natarajan, Muthusamy</creatorcontrib><creatorcontrib>Sridhar, Harikrishnamoorthy</creatorcontrib><creatorcontrib>Umamaheswari, Sankaran</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>World journal of microbiology &amp; biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Uma Vanitha, Murugan</au><au>Natarajan, Muthusamy</au><au>Sridhar, Harikrishnamoorthy</au><au>Umamaheswari, Sankaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microbial fuel cell characterisation and evaluation of Lysinibacillus macroides MFC02 electrigenic capability</atitle><jtitle>World journal of microbiology &amp; biotechnology</jtitle><stitle>World J Microbiol Biotechnol</stitle><addtitle>World J Microbiol Biotechnol</addtitle><date>2017-05-01</date><risdate>2017</risdate><volume>33</volume><issue>5</issue><spage>91</spage><epage>91</epage><pages>91-91</pages><artnum>91</artnum><issn>0959-3993</issn><eissn>1573-0972</eissn><abstract>Microbial fuel cell (MFC) is the most prominent research field due to its capability to generate electricity by utilizing the renewable sources. In the present study, Two MFC designs namely, H type-Microbial fuel cell (HT-MFC) and U type-Microbial fuel cell (UT-MFC) were constructed based on standardized H shaped anode and cathode compartment as well as U shaped anode and cathode compartments, respectively. In order to lower the cost for MFC construction, Pencil graphite lead was used as electrode and salt agar as Proton exchange membrane. Results inferred that newly constructed UT-MFC showed high electron production when compared to the HT-MFC. UT-MFC displayed an output of about 377 ± 18.85 mV (millivolts); whereas HT-MFC rendered only 237 ± 11.85 mV (millivolts) of power generation, which might be due to the low internal resistance. By increasing the number of cathode in UT-MFC, power production was increased upto 313 ± 15.65 mV in Open circuit voltage (OCV). Electrogenic bacteria namely, Lysinibacillus macroides (Acc. No. KX011879) rendered enriched power generation. The attachment of bacteria as a biofilm on pencil graphite lead was analyzed using fluorescent microscope and Scanning Electron Microscope (SEM). Based on our findings, it was observed that UT-MFC has a tendency to produce high electron generation using pencil graphite lead as the electrode material.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>28391561</pmid><doi>10.1007/s11274-017-2252-3</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5910-5881</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0959-3993
ispartof World journal of microbiology & biotechnology, 2017-05, Vol.33 (5), p.91-91, Article 91
issn 0959-3993
1573-0972
language eng
recordid cdi_proquest_miscellaneous_1886349831
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Agar
Anodes
Applied Microbiology
Bacillaceae - classification
Bacillaceae - isolation & purification
Bacillaceae - physiology
Bacteria
Biochemical fuel cells
Biochemistry
Bioelectric Energy Sources - microbiology
Biofilms
Biomedical and Life Sciences
Biotechnology
Cathodes
Electric power generation
Electricity generation
Electrode materials
Electrodes
Electron microscopes
Environmental Engineering/Biotechnology
Fluorescence
Fuel cells
Fuel technology
Graphite
Graphite - chemistry
Life Sciences
Lysinibacillus
Microbiology
Microorganisms
Open circuit voltage
Original Paper
Phylogeny
Sewage treatment plants
title Microbial fuel cell characterisation and evaluation of Lysinibacillus macroides MFC02 electrigenic capability
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T15%3A02%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microbial%20fuel%20cell%20characterisation%20and%20evaluation%20of%20Lysinibacillus%20macroides%20MFC02%20electrigenic%20capability&rft.jtitle=World%20journal%20of%20microbiology%20&%20biotechnology&rft.au=Uma%20Vanitha,%20Murugan&rft.date=2017-05-01&rft.volume=33&rft.issue=5&rft.spage=91&rft.epage=91&rft.pages=91-91&rft.artnum=91&rft.issn=0959-3993&rft.eissn=1573-0972&rft_id=info:doi/10.1007/s11274-017-2252-3&rft_dat=%3Cproquest_cross%3E1886349831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1885415075&rft_id=info:pmid/28391561&rfr_iscdi=true