On-line identification of fermentation processes for ethanol production

A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioprocess and biosystems engineering 2017-07, Vol.40 (7), p.989-1006
Hauptverfasser: Câmara, M. M., Soares, R. M., Feital, T., Naomi, P., Oki, S., Thevelein, J. M., Amaral, M., Pinto, J. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1006
container_issue 7
container_start_page 989
container_title Bioprocess and biosystems engineering
container_volume 40
creator Câmara, M. M.
Soares, R. M.
Feital, T.
Naomi, P.
Oki, S.
Thevelein, J. M.
Amaral, M.
Pinto, J. C.
description A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along with mass and energy balances. The model was then used as a reference model within an identification procedure capable of running on-line. The on-line identification procedure consists on updating the reference model through the estimation of corrective parameters for certain reaction rates using the most recent process measurements. The strategy makes use of standard laboratory measurements for sugars quantification and in situ temperature and liquid level data. The model, along with the on-line identification procedure, has been tested against real industrial data and have been able to accurately predict the main variables of operational interest, i.e., state variables and its dynamics, and key process indicators. The results demonstrate that the strategy is capable of monitoring, in real time, this complex industrial biomass fermentation. This new tool provides a great support for decision-making and opens a new range of opportunities for industrial optimization.
doi_str_mv 10.1007/s00449-017-1762-6
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1886346227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1909111358</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-44677c568de32d9a520858a71762e35ac58e7b43909267af4b28c7b7c1d493433</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMo7rr6AbxIwYuXaCb_e5RFV2FhL3oOaZpql267Ju3Bb29KXRHB02Qmv3nzeAhdArkFQtRdJITzHBNQGJSkWB6hOUgQWEkijg9vkcMMncW4JQSEpuQUzahmOTCl52i1aXFTtz6rS9_2dVU729ddm3VVVvmwS7Op34fO-Rh9zKouZL5_t23XjNNycCNwjk4q20R_8V0X6PXx4WX5hNeb1fPyfo0dJ3mPOZdKOSF16Rktcyso0UJbNdr3TFgntFcFZznJqVS24gXVThXKQclzxhlboJtJN53-GHzsza6OzjeNbX03RANaS8YlpSqh13_QbTeENrkzkPQBgAmdKJgoF7oYg6_MPtQ7Gz4NEDOmbKaUTUrZjDaNTDtX38pDsfPlz8Yh1gTQCYjpq33z4dfpf1W_APHVhhA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1909111358</pqid></control><display><type>article</type><title>On-line identification of fermentation processes for ethanol production</title><source>MEDLINE</source><source>SpringerLink Journals</source><creator>Câmara, M. M. ; Soares, R. M. ; Feital, T. ; Naomi, P. ; Oki, S. ; Thevelein, J. M. ; Amaral, M. ; Pinto, J. C.</creator><creatorcontrib>Câmara, M. M. ; Soares, R. M. ; Feital, T. ; Naomi, P. ; Oki, S. ; Thevelein, J. M. ; Amaral, M. ; Pinto, J. C.</creatorcontrib><description>A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along with mass and energy balances. The model was then used as a reference model within an identification procedure capable of running on-line. The on-line identification procedure consists on updating the reference model through the estimation of corrective parameters for certain reaction rates using the most recent process measurements. The strategy makes use of standard laboratory measurements for sugars quantification and in situ temperature and liquid level data. The model, along with the on-line identification procedure, has been tested against real industrial data and have been able to accurately predict the main variables of operational interest, i.e., state variables and its dynamics, and key process indicators. The results demonstrate that the strategy is capable of monitoring, in real time, this complex industrial biomass fermentation. This new tool provides a great support for decision-making and opens a new range of opportunities for industrial optimization.</description><identifier>ISSN: 1615-7591</identifier><identifier>EISSN: 1615-7605</identifier><identifier>DOI: 10.1007/s00449-017-1762-6</identifier><identifier>PMID: 28391378</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Bioengineering ; Biomass ; Biotechnology ; Carbohydrates ; Chemistry ; Chemistry and Materials Science ; Corn ; Decision making ; Energy ; Energy balance ; Environmental Engineering/Biotechnology ; Ethanol ; Fermentation ; Food Science ; Indicators ; Industrial and Production Engineering ; Industrial Chemistry/Chemical Engineering ; Mathematical models ; Monitoring ; Optimization ; Parameter estimation ; Real time ; Research Paper ; Running ; Saccharification ; Saccharomyces cerevisiae ; Sugar ; Temperature effects ; Zea mays</subject><ispartof>Bioprocess and biosystems engineering, 2017-07, Vol.40 (7), p.989-1006</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Bioprocess and Biosystems Engineering is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-44677c568de32d9a520858a71762e35ac58e7b43909267af4b28c7b7c1d493433</citedby><cites>FETCH-LOGICAL-c409t-44677c568de32d9a520858a71762e35ac58e7b43909267af4b28c7b7c1d493433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00449-017-1762-6$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00449-017-1762-6$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28391378$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Câmara, M. M.</creatorcontrib><creatorcontrib>Soares, R. M.</creatorcontrib><creatorcontrib>Feital, T.</creatorcontrib><creatorcontrib>Naomi, P.</creatorcontrib><creatorcontrib>Oki, S.</creatorcontrib><creatorcontrib>Thevelein, J. M.</creatorcontrib><creatorcontrib>Amaral, M.</creatorcontrib><creatorcontrib>Pinto, J. C.</creatorcontrib><title>On-line identification of fermentation processes for ethanol production</title><title>Bioprocess and biosystems engineering</title><addtitle>Bioprocess Biosyst Eng</addtitle><addtitle>Bioprocess Biosyst Eng</addtitle><description>A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along with mass and energy balances. The model was then used as a reference model within an identification procedure capable of running on-line. The on-line identification procedure consists on updating the reference model through the estimation of corrective parameters for certain reaction rates using the most recent process measurements. The strategy makes use of standard laboratory measurements for sugars quantification and in situ temperature and liquid level data. The model, along with the on-line identification procedure, has been tested against real industrial data and have been able to accurately predict the main variables of operational interest, i.e., state variables and its dynamics, and key process indicators. The results demonstrate that the strategy is capable of monitoring, in real time, this complex industrial biomass fermentation. This new tool provides a great support for decision-making and opens a new range of opportunities for industrial optimization.</description><subject>Bioengineering</subject><subject>Biomass</subject><subject>Biotechnology</subject><subject>Carbohydrates</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Corn</subject><subject>Decision making</subject><subject>Energy</subject><subject>Energy balance</subject><subject>Environmental Engineering/Biotechnology</subject><subject>Ethanol</subject><subject>Fermentation</subject><subject>Food Science</subject><subject>Indicators</subject><subject>Industrial and Production Engineering</subject><subject>Industrial Chemistry/Chemical Engineering</subject><subject>Mathematical models</subject><subject>Monitoring</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Real time</subject><subject>Research Paper</subject><subject>Running</subject><subject>Saccharification</subject><subject>Saccharomyces cerevisiae</subject><subject>Sugar</subject><subject>Temperature effects</subject><subject>Zea mays</subject><issn>1615-7591</issn><issn>1615-7605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNp1kE9LxDAQxYMo7rr6AbxIwYuXaCb_e5RFV2FhL3oOaZpql267Ju3Bb29KXRHB02Qmv3nzeAhdArkFQtRdJITzHBNQGJSkWB6hOUgQWEkijg9vkcMMncW4JQSEpuQUzahmOTCl52i1aXFTtz6rS9_2dVU729ddm3VVVvmwS7Op34fO-Rh9zKouZL5_t23XjNNycCNwjk4q20R_8V0X6PXx4WX5hNeb1fPyfo0dJ3mPOZdKOSF16Rktcyso0UJbNdr3TFgntFcFZznJqVS24gXVThXKQclzxhlboJtJN53-GHzsza6OzjeNbX03RANaS8YlpSqh13_QbTeENrkzkPQBgAmdKJgoF7oYg6_MPtQ7Gz4NEDOmbKaUTUrZjDaNTDtX38pDsfPlz8Yh1gTQCYjpq33z4dfpf1W_APHVhhA</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Câmara, M. M.</creator><creator>Soares, R. M.</creator><creator>Feital, T.</creator><creator>Naomi, P.</creator><creator>Oki, S.</creator><creator>Thevelein, J. M.</creator><creator>Amaral, M.</creator><creator>Pinto, J. C.</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>On-line identification of fermentation processes for ethanol production</title><author>Câmara, M. M. ; Soares, R. M. ; Feital, T. ; Naomi, P. ; Oki, S. ; Thevelein, J. M. ; Amaral, M. ; Pinto, J. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-44677c568de32d9a520858a71762e35ac58e7b43909267af4b28c7b7c1d493433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bioengineering</topic><topic>Biomass</topic><topic>Biotechnology</topic><topic>Carbohydrates</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Corn</topic><topic>Decision making</topic><topic>Energy</topic><topic>Energy balance</topic><topic>Environmental Engineering/Biotechnology</topic><topic>Ethanol</topic><topic>Fermentation</topic><topic>Food Science</topic><topic>Indicators</topic><topic>Industrial and Production Engineering</topic><topic>Industrial Chemistry/Chemical Engineering</topic><topic>Mathematical models</topic><topic>Monitoring</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Real time</topic><topic>Research Paper</topic><topic>Running</topic><topic>Saccharification</topic><topic>Saccharomyces cerevisiae</topic><topic>Sugar</topic><topic>Temperature effects</topic><topic>Zea mays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Câmara, M. M.</creatorcontrib><creatorcontrib>Soares, R. M.</creatorcontrib><creatorcontrib>Feital, T.</creatorcontrib><creatorcontrib>Naomi, P.</creatorcontrib><creatorcontrib>Oki, S.</creatorcontrib><creatorcontrib>Thevelein, J. M.</creatorcontrib><creatorcontrib>Amaral, M.</creatorcontrib><creatorcontrib>Pinto, J. C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>Bioprocess and biosystems engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Câmara, M. M.</au><au>Soares, R. M.</au><au>Feital, T.</au><au>Naomi, P.</au><au>Oki, S.</au><au>Thevelein, J. M.</au><au>Amaral, M.</au><au>Pinto, J. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On-line identification of fermentation processes for ethanol production</atitle><jtitle>Bioprocess and biosystems engineering</jtitle><stitle>Bioprocess Biosyst Eng</stitle><addtitle>Bioprocess Biosyst Eng</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>40</volume><issue>7</issue><spage>989</spage><epage>1006</epage><pages>989-1006</pages><issn>1615-7591</issn><eissn>1615-7605</eissn><abstract>A strategy for monitoring fermentation processes, specifically, simultaneous saccharification and fermentation (SSF) of corn mash, was developed. The strategy covered the development and use of first principles, semimechanistic and unstructured process model based on major kinetic phenomena, along with mass and energy balances. The model was then used as a reference model within an identification procedure capable of running on-line. The on-line identification procedure consists on updating the reference model through the estimation of corrective parameters for certain reaction rates using the most recent process measurements. The strategy makes use of standard laboratory measurements for sugars quantification and in situ temperature and liquid level data. The model, along with the on-line identification procedure, has been tested against real industrial data and have been able to accurately predict the main variables of operational interest, i.e., state variables and its dynamics, and key process indicators. The results demonstrate that the strategy is capable of monitoring, in real time, this complex industrial biomass fermentation. This new tool provides a great support for decision-making and opens a new range of opportunities for industrial optimization.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>28391378</pmid><doi>10.1007/s00449-017-1762-6</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1615-7591
ispartof Bioprocess and biosystems engineering, 2017-07, Vol.40 (7), p.989-1006
issn 1615-7591
1615-7605
language eng
recordid cdi_proquest_miscellaneous_1886346227
source MEDLINE; SpringerLink Journals
subjects Bioengineering
Biomass
Biotechnology
Carbohydrates
Chemistry
Chemistry and Materials Science
Corn
Decision making
Energy
Energy balance
Environmental Engineering/Biotechnology
Ethanol
Fermentation
Food Science
Indicators
Industrial and Production Engineering
Industrial Chemistry/Chemical Engineering
Mathematical models
Monitoring
Optimization
Parameter estimation
Real time
Research Paper
Running
Saccharification
Saccharomyces cerevisiae
Sugar
Temperature effects
Zea mays
title On-line identification of fermentation processes for ethanol production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T08%3A51%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On-line%20identification%20of%20fermentation%20processes%20for%20ethanol%20production&rft.jtitle=Bioprocess%20and%20biosystems%20engineering&rft.au=C%C3%A2mara,%20M.%20M.&rft.date=2017-07-01&rft.volume=40&rft.issue=7&rft.spage=989&rft.epage=1006&rft.pages=989-1006&rft.issn=1615-7591&rft.eissn=1615-7605&rft_id=info:doi/10.1007/s00449-017-1762-6&rft_dat=%3Cproquest_cross%3E1909111358%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1909111358&rft_id=info:pmid/28391378&rfr_iscdi=true