An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels

Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2017-06, Vol.66 (6), p.1723-1728
Hauptverfasser: Cheung, Chloe Y Y, Tang, Clara S, Xu, Aimin, Lee, Chi-Ho, Au, Ka-Wing, Xu, Lin, Fong, Carol H Y, Kwok, Kelvin H M, Chow, Wing-Sun, Woo, Yu-Cho, Yuen, Michele M A, Cherny, Stacey S, Hai, JoJo, Cheung, Bernard M Y, Tan, Kathryn C B, Lam, Tai-Hing, Tse, Hung-Fat, Sham, Pak-Chung, Lam, Karen S L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1728
container_issue 6
container_start_page 1723
container_title Diabetes (New York, N.Y.)
container_volume 66
creator Cheung, Chloe Y Y
Tang, Clara S
Xu, Aimin
Lee, Chi-Ho
Au, Ka-Wing
Xu, Lin
Fong, Carol H Y
Kwok, Kelvin H M
Chow, Wing-Sun
Woo, Yu-Cho
Yuen, Michele M A
Cherny, Stacey S
Hai, JoJo
Cheung, Bernard M Y
Tan, Kathryn C B
Lam, Tai-Hing
Tse, Hung-Fat
Sham, Pak-Chung
Lam, Karen S L
description Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus, , significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of , rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex ( = 1.61 × 10 ; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI ( = 3.01 × 10 ; β [SE] = 0.15 [0.02]). Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate-mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.
doi_str_mv 10.2337/db16-1384
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1885946847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932331414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-94f46ca2d56d652dc7d47a6bf859b0c67544c99d9b226fbea8b1f504cd252b923</originalsourceid><addsrcrecordid>eNpdkU1P4zAQhq3Vom1hOfAHVpb2shwC_opjH6uKFkQRUhcQt8h2HHCVOt1MguiNn46rAofVHOYwzzzSzIvQCSVnjPPivLJUZpQr8Q2NqeY646x4_I7GhFCW0UIXI3QIsCKEyFQ_0IgprnJFyBi9TSK-eG3XPps-hw2eALQumD60EU-iabYQAIeI0zB68PjvYFfe9YCX_sWbBrDBsyG6HW8afBMAfEzYg-mCiT1uazyfXi_x3bPp08rT0JjeA57NZ4ziRVI08BMd1Enkjz_6EbqfXdxNL7PF7fxqOllkjgvVZ1rUQjrDqlxWMmeVKypRGGlrlWtLnCxyIZzWlbaMydp6oyytcyJcxXJmNeNH6M_eu-naf4OHvlwHcL5pTPTtACVVySSkEkVCf_-HrtqhSwcmSvP0cSqoSNTpnnJdC9D5utx0YW26bUlJuYul3MVS7mJJ7K8P42DXvvoiP3Pg7yp0hpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932331414</pqid></control><display><type>article</type><title>An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cheung, Chloe Y Y ; Tang, Clara S ; Xu, Aimin ; Lee, Chi-Ho ; Au, Ka-Wing ; Xu, Lin ; Fong, Carol H Y ; Kwok, Kelvin H M ; Chow, Wing-Sun ; Woo, Yu-Cho ; Yuen, Michele M A ; Cherny, Stacey S ; Hai, JoJo ; Cheung, Bernard M Y ; Tan, Kathryn C B ; Lam, Tai-Hing ; Tse, Hung-Fat ; Sham, Pak-Chung ; Lam, Karen S L</creator><creatorcontrib>Cheung, Chloe Y Y ; Tang, Clara S ; Xu, Aimin ; Lee, Chi-Ho ; Au, Ka-Wing ; Xu, Lin ; Fong, Carol H Y ; Kwok, Kelvin H M ; Chow, Wing-Sun ; Woo, Yu-Cho ; Yuen, Michele M A ; Cherny, Stacey S ; Hai, JoJo ; Cheung, Bernard M Y ; Tan, Kathryn C B ; Lam, Tai-Hing ; Tse, Hung-Fat ; Sham, Pak-Chung ; Lam, Karen S L</creatorcontrib><description>Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus, , significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of , rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex ( = 1.61 × 10 ; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI ( = 3.01 × 10 ; β [SE] = 0.15 [0.02]). Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate-mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db16-1384</identifier><identifier>PMID: 28385800</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adult ; Aged ; Asian Continental Ancestry Group - genetics ; Asian people ; Association analysis ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Carnitine ; Carnitine O-Palmitoyltransferase ; Exome ; Fatty Acids - biosynthesis ; Female ; Fibroblast growth factors ; Fibroblast Growth Factors - genetics ; Gene expression ; Gene Expression Regulation - genetics ; Genomes ; Genotyping ; Glucokinase ; Glucokinase - metabolism ; Glucose ; Glucose-6-Phosphate - metabolism ; Homeostasis ; Humans ; Kinases ; Male ; Malonyl Coenzyme A - metabolism ; Middle Aged ; Mutation, Missense ; Polymorphism ; Polymorphism, Single Nucleotide ; Single-nucleotide polymorphism</subject><ispartof>Diabetes (New York, N.Y.), 2017-06, Vol.66 (6), p.1723-1728</ispartof><rights>2017 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Jun 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-94f46ca2d56d652dc7d47a6bf859b0c67544c99d9b226fbea8b1f504cd252b923</citedby><cites>FETCH-LOGICAL-c348t-94f46ca2d56d652dc7d47a6bf859b0c67544c99d9b226fbea8b1f504cd252b923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28385800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheung, Chloe Y Y</creatorcontrib><creatorcontrib>Tang, Clara S</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><creatorcontrib>Lee, Chi-Ho</creatorcontrib><creatorcontrib>Au, Ka-Wing</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Fong, Carol H Y</creatorcontrib><creatorcontrib>Kwok, Kelvin H M</creatorcontrib><creatorcontrib>Chow, Wing-Sun</creatorcontrib><creatorcontrib>Woo, Yu-Cho</creatorcontrib><creatorcontrib>Yuen, Michele M A</creatorcontrib><creatorcontrib>Cherny, Stacey S</creatorcontrib><creatorcontrib>Hai, JoJo</creatorcontrib><creatorcontrib>Cheung, Bernard M Y</creatorcontrib><creatorcontrib>Tan, Kathryn C B</creatorcontrib><creatorcontrib>Lam, Tai-Hing</creatorcontrib><creatorcontrib>Tse, Hung-Fat</creatorcontrib><creatorcontrib>Sham, Pak-Chung</creatorcontrib><creatorcontrib>Lam, Karen S L</creatorcontrib><title>An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus, , significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of , rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex ( = 1.61 × 10 ; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI ( = 3.01 × 10 ; β [SE] = 0.15 [0.02]). Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate-mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adult</subject><subject>Aged</subject><subject>Asian Continental Ancestry Group - genetics</subject><subject>Asian people</subject><subject>Association analysis</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Carnitine</subject><subject>Carnitine O-Palmitoyltransferase</subject><subject>Exome</subject><subject>Fatty Acids - biosynthesis</subject><subject>Female</subject><subject>Fibroblast growth factors</subject><subject>Fibroblast Growth Factors - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Glucokinase</subject><subject>Glucokinase - metabolism</subject><subject>Glucose</subject><subject>Glucose-6-Phosphate - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Kinases</subject><subject>Male</subject><subject>Malonyl Coenzyme A - metabolism</subject><subject>Middle Aged</subject><subject>Mutation, Missense</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Single-nucleotide polymorphism</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1P4zAQhq3Vom1hOfAHVpb2shwC_opjH6uKFkQRUhcQt8h2HHCVOt1MguiNn46rAofVHOYwzzzSzIvQCSVnjPPivLJUZpQr8Q2NqeY646x4_I7GhFCW0UIXI3QIsCKEyFQ_0IgprnJFyBi9TSK-eG3XPps-hw2eALQumD60EU-iabYQAIeI0zB68PjvYFfe9YCX_sWbBrDBsyG6HW8afBMAfEzYg-mCiT1uazyfXi_x3bPp08rT0JjeA57NZ4ziRVI08BMd1Enkjz_6EbqfXdxNL7PF7fxqOllkjgvVZ1rUQjrDqlxWMmeVKypRGGlrlWtLnCxyIZzWlbaMydp6oyytcyJcxXJmNeNH6M_eu-naf4OHvlwHcL5pTPTtACVVySSkEkVCf_-HrtqhSwcmSvP0cSqoSNTpnnJdC9D5utx0YW26bUlJuYul3MVS7mJJ7K8P42DXvvoiP3Pg7yp0hpo</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Cheung, Chloe Y Y</creator><creator>Tang, Clara S</creator><creator>Xu, Aimin</creator><creator>Lee, Chi-Ho</creator><creator>Au, Ka-Wing</creator><creator>Xu, Lin</creator><creator>Fong, Carol H Y</creator><creator>Kwok, Kelvin H M</creator><creator>Chow, Wing-Sun</creator><creator>Woo, Yu-Cho</creator><creator>Yuen, Michele M A</creator><creator>Cherny, Stacey S</creator><creator>Hai, JoJo</creator><creator>Cheung, Bernard M Y</creator><creator>Tan, Kathryn C B</creator><creator>Lam, Tai-Hing</creator><creator>Tse, Hung-Fat</creator><creator>Sham, Pak-Chung</creator><creator>Lam, Karen S L</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels</title><author>Cheung, Chloe Y Y ; Tang, Clara S ; Xu, Aimin ; Lee, Chi-Ho ; Au, Ka-Wing ; Xu, Lin ; Fong, Carol H Y ; Kwok, Kelvin H M ; Chow, Wing-Sun ; Woo, Yu-Cho ; Yuen, Michele M A ; Cherny, Stacey S ; Hai, JoJo ; Cheung, Bernard M Y ; Tan, Kathryn C B ; Lam, Tai-Hing ; Tse, Hung-Fat ; Sham, Pak-Chung ; Lam, Karen S L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-94f46ca2d56d652dc7d47a6bf859b0c67544c99d9b226fbea8b1f504cd252b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adult</topic><topic>Aged</topic><topic>Asian Continental Ancestry Group - genetics</topic><topic>Asian people</topic><topic>Association analysis</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Carnitine</topic><topic>Carnitine O-Palmitoyltransferase</topic><topic>Exome</topic><topic>Fatty Acids - biosynthesis</topic><topic>Female</topic><topic>Fibroblast growth factors</topic><topic>Fibroblast Growth Factors - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Glucokinase</topic><topic>Glucokinase - metabolism</topic><topic>Glucose</topic><topic>Glucose-6-Phosphate - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Kinases</topic><topic>Male</topic><topic>Malonyl Coenzyme A - metabolism</topic><topic>Middle Aged</topic><topic>Mutation, Missense</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheung, Chloe Y Y</creatorcontrib><creatorcontrib>Tang, Clara S</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><creatorcontrib>Lee, Chi-Ho</creatorcontrib><creatorcontrib>Au, Ka-Wing</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Fong, Carol H Y</creatorcontrib><creatorcontrib>Kwok, Kelvin H M</creatorcontrib><creatorcontrib>Chow, Wing-Sun</creatorcontrib><creatorcontrib>Woo, Yu-Cho</creatorcontrib><creatorcontrib>Yuen, Michele M A</creatorcontrib><creatorcontrib>Cherny, Stacey S</creatorcontrib><creatorcontrib>Hai, JoJo</creatorcontrib><creatorcontrib>Cheung, Bernard M Y</creatorcontrib><creatorcontrib>Tan, Kathryn C B</creatorcontrib><creatorcontrib>Lam, Tai-Hing</creatorcontrib><creatorcontrib>Tse, Hung-Fat</creatorcontrib><creatorcontrib>Sham, Pak-Chung</creatorcontrib><creatorcontrib>Lam, Karen S L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheung, Chloe Y Y</au><au>Tang, Clara S</au><au>Xu, Aimin</au><au>Lee, Chi-Ho</au><au>Au, Ka-Wing</au><au>Xu, Lin</au><au>Fong, Carol H Y</au><au>Kwok, Kelvin H M</au><au>Chow, Wing-Sun</au><au>Woo, Yu-Cho</au><au>Yuen, Michele M A</au><au>Cherny, Stacey S</au><au>Hai, JoJo</au><au>Cheung, Bernard M Y</au><au>Tan, Kathryn C B</au><au>Lam, Tai-Hing</au><au>Tse, Hung-Fat</au><au>Sham, Pak-Chung</au><au>Lam, Karen S L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2017-06</date><risdate>2017</risdate><volume>66</volume><issue>6</issue><spage>1723</spage><epage>1728</epage><pages>1723-1728</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus, , significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of , rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex ( = 1.61 × 10 ; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI ( = 3.01 × 10 ; β [SE] = 0.15 [0.02]). Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate-mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>28385800</pmid><doi>10.2337/db16-1384</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2017-06, Vol.66 (6), p.1723-1728
issn 0012-1797
1939-327X
language eng
recordid cdi_proquest_miscellaneous_1885946847
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adaptor Proteins, Signal Transducing - genetics
Adult
Aged
Asian Continental Ancestry Group - genetics
Asian people
Association analysis
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism
Carnitine
Carnitine O-Palmitoyltransferase
Exome
Fatty Acids - biosynthesis
Female
Fibroblast growth factors
Fibroblast Growth Factors - genetics
Gene expression
Gene Expression Regulation - genetics
Genomes
Genotyping
Glucokinase
Glucokinase - metabolism
Glucose
Glucose-6-Phosphate - metabolism
Homeostasis
Humans
Kinases
Male
Malonyl Coenzyme A - metabolism
Middle Aged
Mutation, Missense
Polymorphism
Polymorphism, Single Nucleotide
Single-nucleotide polymorphism
title An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Exome-Chip%20Association%20Analysis%20in%20Chinese%20Subjects%20Reveals%20a%20Functional%20Missense%20Variant%20of%20GCKR%20That%20Regulates%20FGF21%20Levels&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Cheung,%20Chloe%20Y%20Y&rft.date=2017-06&rft.volume=66&rft.issue=6&rft.spage=1723&rft.epage=1728&rft.pages=1723-1728&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db16-1384&rft_dat=%3Cproquest_cross%3E1932331414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932331414&rft_id=info:pmid/28385800&rfr_iscdi=true