An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels
Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-ch...
Gespeichert in:
Veröffentlicht in: | Diabetes (New York, N.Y.) N.Y.), 2017-06, Vol.66 (6), p.1723-1728 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1728 |
---|---|
container_issue | 6 |
container_start_page | 1723 |
container_title | Diabetes (New York, N.Y.) |
container_volume | 66 |
creator | Cheung, Chloe Y Y Tang, Clara S Xu, Aimin Lee, Chi-Ho Au, Ka-Wing Xu, Lin Fong, Carol H Y Kwok, Kelvin H M Chow, Wing-Sun Woo, Yu-Cho Yuen, Michele M A Cherny, Stacey S Hai, JoJo Cheung, Bernard M Y Tan, Kathryn C B Lam, Tai-Hing Tse, Hung-Fat Sham, Pak-Chung Lam, Karen S L |
description | Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus,
, significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of
, rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex (
= 1.61 × 10
; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI (
= 3.01 × 10
; β [SE] = 0.15 [0.02]).
Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate-mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted. |
doi_str_mv | 10.2337/db16-1384 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1885946847</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932331414</sourcerecordid><originalsourceid>FETCH-LOGICAL-c348t-94f46ca2d56d652dc7d47a6bf859b0c67544c99d9b226fbea8b1f504cd252b923</originalsourceid><addsrcrecordid>eNpdkU1P4zAQhq3Vom1hOfAHVpb2shwC_opjH6uKFkQRUhcQt8h2HHCVOt1MguiNn46rAofVHOYwzzzSzIvQCSVnjPPivLJUZpQr8Q2NqeY646x4_I7GhFCW0UIXI3QIsCKEyFQ_0IgprnJFyBi9TSK-eG3XPps-hw2eALQumD60EU-iabYQAIeI0zB68PjvYFfe9YCX_sWbBrDBsyG6HW8afBMAfEzYg-mCiT1uazyfXi_x3bPp08rT0JjeA57NZ4ziRVI08BMd1Enkjz_6EbqfXdxNL7PF7fxqOllkjgvVZ1rUQjrDqlxWMmeVKypRGGlrlWtLnCxyIZzWlbaMydp6oyytcyJcxXJmNeNH6M_eu-naf4OHvlwHcL5pTPTtACVVySSkEkVCf_-HrtqhSwcmSvP0cSqoSNTpnnJdC9D5utx0YW26bUlJuYul3MVS7mJJ7K8P42DXvvoiP3Pg7yp0hpo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932331414</pqid></control><display><type>article</type><title>An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Cheung, Chloe Y Y ; Tang, Clara S ; Xu, Aimin ; Lee, Chi-Ho ; Au, Ka-Wing ; Xu, Lin ; Fong, Carol H Y ; Kwok, Kelvin H M ; Chow, Wing-Sun ; Woo, Yu-Cho ; Yuen, Michele M A ; Cherny, Stacey S ; Hai, JoJo ; Cheung, Bernard M Y ; Tan, Kathryn C B ; Lam, Tai-Hing ; Tse, Hung-Fat ; Sham, Pak-Chung ; Lam, Karen S L</creator><creatorcontrib>Cheung, Chloe Y Y ; Tang, Clara S ; Xu, Aimin ; Lee, Chi-Ho ; Au, Ka-Wing ; Xu, Lin ; Fong, Carol H Y ; Kwok, Kelvin H M ; Chow, Wing-Sun ; Woo, Yu-Cho ; Yuen, Michele M A ; Cherny, Stacey S ; Hai, JoJo ; Cheung, Bernard M Y ; Tan, Kathryn C B ; Lam, Tai-Hing ; Tse, Hung-Fat ; Sham, Pak-Chung ; Lam, Karen S L</creatorcontrib><description>Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus,
, significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of
, rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex (
= 1.61 × 10
; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI (
= 3.01 × 10
; β [SE] = 0.15 [0.02]).
Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate-mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db16-1384</identifier><identifier>PMID: 28385800</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Adaptor Proteins, Signal Transducing - genetics ; Adult ; Aged ; Asian Continental Ancestry Group - genetics ; Asian people ; Association analysis ; Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism ; Carnitine ; Carnitine O-Palmitoyltransferase ; Exome ; Fatty Acids - biosynthesis ; Female ; Fibroblast growth factors ; Fibroblast Growth Factors - genetics ; Gene expression ; Gene Expression Regulation - genetics ; Genomes ; Genotyping ; Glucokinase ; Glucokinase - metabolism ; Glucose ; Glucose-6-Phosphate - metabolism ; Homeostasis ; Humans ; Kinases ; Male ; Malonyl Coenzyme A - metabolism ; Middle Aged ; Mutation, Missense ; Polymorphism ; Polymorphism, Single Nucleotide ; Single-nucleotide polymorphism</subject><ispartof>Diabetes (New York, N.Y.), 2017-06, Vol.66 (6), p.1723-1728</ispartof><rights>2017 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Jun 1, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c348t-94f46ca2d56d652dc7d47a6bf859b0c67544c99d9b226fbea8b1f504cd252b923</citedby><cites>FETCH-LOGICAL-c348t-94f46ca2d56d652dc7d47a6bf859b0c67544c99d9b226fbea8b1f504cd252b923</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28385800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cheung, Chloe Y Y</creatorcontrib><creatorcontrib>Tang, Clara S</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><creatorcontrib>Lee, Chi-Ho</creatorcontrib><creatorcontrib>Au, Ka-Wing</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Fong, Carol H Y</creatorcontrib><creatorcontrib>Kwok, Kelvin H M</creatorcontrib><creatorcontrib>Chow, Wing-Sun</creatorcontrib><creatorcontrib>Woo, Yu-Cho</creatorcontrib><creatorcontrib>Yuen, Michele M A</creatorcontrib><creatorcontrib>Cherny, Stacey S</creatorcontrib><creatorcontrib>Hai, JoJo</creatorcontrib><creatorcontrib>Cheung, Bernard M Y</creatorcontrib><creatorcontrib>Tan, Kathryn C B</creatorcontrib><creatorcontrib>Lam, Tai-Hing</creatorcontrib><creatorcontrib>Tse, Hung-Fat</creatorcontrib><creatorcontrib>Sham, Pak-Chung</creatorcontrib><creatorcontrib>Lam, Karen S L</creatorcontrib><title>An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus,
, significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of
, rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex (
= 1.61 × 10
; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI (
= 3.01 × 10
; β [SE] = 0.15 [0.02]).
Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate-mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.</description><subject>Adaptor Proteins, Signal Transducing - genetics</subject><subject>Adult</subject><subject>Aged</subject><subject>Asian Continental Ancestry Group - genetics</subject><subject>Asian people</subject><subject>Association analysis</subject><subject>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</subject><subject>Carnitine</subject><subject>Carnitine O-Palmitoyltransferase</subject><subject>Exome</subject><subject>Fatty Acids - biosynthesis</subject><subject>Female</subject><subject>Fibroblast growth factors</subject><subject>Fibroblast Growth Factors - genetics</subject><subject>Gene expression</subject><subject>Gene Expression Regulation - genetics</subject><subject>Genomes</subject><subject>Genotyping</subject><subject>Glucokinase</subject><subject>Glucokinase - metabolism</subject><subject>Glucose</subject><subject>Glucose-6-Phosphate - metabolism</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Kinases</subject><subject>Male</subject><subject>Malonyl Coenzyme A - metabolism</subject><subject>Middle Aged</subject><subject>Mutation, Missense</subject><subject>Polymorphism</subject><subject>Polymorphism, Single Nucleotide</subject><subject>Single-nucleotide polymorphism</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1P4zAQhq3Vom1hOfAHVpb2shwC_opjH6uKFkQRUhcQt8h2HHCVOt1MguiNn46rAofVHOYwzzzSzIvQCSVnjPPivLJUZpQr8Q2NqeY646x4_I7GhFCW0UIXI3QIsCKEyFQ_0IgprnJFyBi9TSK-eG3XPps-hw2eALQumD60EU-iabYQAIeI0zB68PjvYFfe9YCX_sWbBrDBsyG6HW8afBMAfEzYg-mCiT1uazyfXi_x3bPp08rT0JjeA57NZ4ziRVI08BMd1Enkjz_6EbqfXdxNL7PF7fxqOllkjgvVZ1rUQjrDqlxWMmeVKypRGGlrlWtLnCxyIZzWlbaMydp6oyytcyJcxXJmNeNH6M_eu-naf4OHvlwHcL5pTPTtACVVySSkEkVCf_-HrtqhSwcmSvP0cSqoSNTpnnJdC9D5utx0YW26bUlJuYul3MVS7mJJ7K8P42DXvvoiP3Pg7yp0hpo</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Cheung, Chloe Y Y</creator><creator>Tang, Clara S</creator><creator>Xu, Aimin</creator><creator>Lee, Chi-Ho</creator><creator>Au, Ka-Wing</creator><creator>Xu, Lin</creator><creator>Fong, Carol H Y</creator><creator>Kwok, Kelvin H M</creator><creator>Chow, Wing-Sun</creator><creator>Woo, Yu-Cho</creator><creator>Yuen, Michele M A</creator><creator>Cherny, Stacey S</creator><creator>Hai, JoJo</creator><creator>Cheung, Bernard M Y</creator><creator>Tan, Kathryn C B</creator><creator>Lam, Tai-Hing</creator><creator>Tse, Hung-Fat</creator><creator>Sham, Pak-Chung</creator><creator>Lam, Karen S L</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels</title><author>Cheung, Chloe Y Y ; Tang, Clara S ; Xu, Aimin ; Lee, Chi-Ho ; Au, Ka-Wing ; Xu, Lin ; Fong, Carol H Y ; Kwok, Kelvin H M ; Chow, Wing-Sun ; Woo, Yu-Cho ; Yuen, Michele M A ; Cherny, Stacey S ; Hai, JoJo ; Cheung, Bernard M Y ; Tan, Kathryn C B ; Lam, Tai-Hing ; Tse, Hung-Fat ; Sham, Pak-Chung ; Lam, Karen S L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c348t-94f46ca2d56d652dc7d47a6bf859b0c67544c99d9b226fbea8b1f504cd252b923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adaptor Proteins, Signal Transducing - genetics</topic><topic>Adult</topic><topic>Aged</topic><topic>Asian Continental Ancestry Group - genetics</topic><topic>Asian people</topic><topic>Association analysis</topic><topic>Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism</topic><topic>Carnitine</topic><topic>Carnitine O-Palmitoyltransferase</topic><topic>Exome</topic><topic>Fatty Acids - biosynthesis</topic><topic>Female</topic><topic>Fibroblast growth factors</topic><topic>Fibroblast Growth Factors - genetics</topic><topic>Gene expression</topic><topic>Gene Expression Regulation - genetics</topic><topic>Genomes</topic><topic>Genotyping</topic><topic>Glucokinase</topic><topic>Glucokinase - metabolism</topic><topic>Glucose</topic><topic>Glucose-6-Phosphate - metabolism</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Kinases</topic><topic>Male</topic><topic>Malonyl Coenzyme A - metabolism</topic><topic>Middle Aged</topic><topic>Mutation, Missense</topic><topic>Polymorphism</topic><topic>Polymorphism, Single Nucleotide</topic><topic>Single-nucleotide polymorphism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheung, Chloe Y Y</creatorcontrib><creatorcontrib>Tang, Clara S</creatorcontrib><creatorcontrib>Xu, Aimin</creatorcontrib><creatorcontrib>Lee, Chi-Ho</creatorcontrib><creatorcontrib>Au, Ka-Wing</creatorcontrib><creatorcontrib>Xu, Lin</creatorcontrib><creatorcontrib>Fong, Carol H Y</creatorcontrib><creatorcontrib>Kwok, Kelvin H M</creatorcontrib><creatorcontrib>Chow, Wing-Sun</creatorcontrib><creatorcontrib>Woo, Yu-Cho</creatorcontrib><creatorcontrib>Yuen, Michele M A</creatorcontrib><creatorcontrib>Cherny, Stacey S</creatorcontrib><creatorcontrib>Hai, JoJo</creatorcontrib><creatorcontrib>Cheung, Bernard M Y</creatorcontrib><creatorcontrib>Tan, Kathryn C B</creatorcontrib><creatorcontrib>Lam, Tai-Hing</creatorcontrib><creatorcontrib>Tse, Hung-Fat</creatorcontrib><creatorcontrib>Sham, Pak-Chung</creatorcontrib><creatorcontrib>Lam, Karen S L</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cheung, Chloe Y Y</au><au>Tang, Clara S</au><au>Xu, Aimin</au><au>Lee, Chi-Ho</au><au>Au, Ka-Wing</au><au>Xu, Lin</au><au>Fong, Carol H Y</au><au>Kwok, Kelvin H M</au><au>Chow, Wing-Sun</au><au>Woo, Yu-Cho</au><au>Yuen, Michele M A</au><au>Cherny, Stacey S</au><au>Hai, JoJo</au><au>Cheung, Bernard M Y</au><au>Tan, Kathryn C B</au><au>Lam, Tai-Hing</au><au>Tse, Hung-Fat</au><au>Sham, Pak-Chung</au><au>Lam, Karen S L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2017-06</date><risdate>2017</risdate><volume>66</volume><issue>6</issue><spage>1723</spage><epage>1728</epage><pages>1723-1728</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Fibroblast growth factor 21 (FGF21) is increasingly recognized as an important metabolic regulator of glucose homeostasis. Here, we conducted an exome-chip association analysis by genotyping 5,169 Chinese individuals from a community-based cohort and two clinic-based cohorts. A custom Asian exome-chip was used to detect genetic determinants influencing circulating FGF21 levels. Single-variant association analysis interrogating 70,444 single nucleotide polymorphisms identified a novel locus,
, significantly associated with circulating FGF21 levels at genome-wide significance. In the combined analysis, the common missense variant of
, rs1260326 (p.Pro446Leu), showed an association with FGF21 levels after adjustment for age and sex (
= 1.61 × 10
; β [SE] = 0.14 [0.02]), which remained significant on further adjustment for BMI (
= 3.01 × 10
; β [SE] = 0.15 [0.02]).
Leu446 may influence FGF21 expression via its ability to increase glucokinase (GCK) activity. This can lead to enhanced FGF21 expression via elevated fatty acid synthesis, consequent to the inhibition of carnitine/palmitoyl-transferase by malonyl-CoA, and via increased glucose-6-phosphate-mediated activation of the carbohydrate response element binding protein, known to regulate FGF21 gene expression. Our findings shed new light on the genetic regulation of FGF21 levels. Further investigations to dissect the relationship between GCKR and FGF21, with respect to the risk of metabolic diseases, are warranted.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>28385800</pmid><doi>10.2337/db16-1384</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0012-1797 |
ispartof | Diabetes (New York, N.Y.), 2017-06, Vol.66 (6), p.1723-1728 |
issn | 0012-1797 1939-327X |
language | eng |
recordid | cdi_proquest_miscellaneous_1885946847 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adaptor Proteins, Signal Transducing - genetics Adult Aged Asian Continental Ancestry Group - genetics Asian people Association analysis Basic Helix-Loop-Helix Leucine Zipper Transcription Factors - metabolism Carnitine Carnitine O-Palmitoyltransferase Exome Fatty Acids - biosynthesis Female Fibroblast growth factors Fibroblast Growth Factors - genetics Gene expression Gene Expression Regulation - genetics Genomes Genotyping Glucokinase Glucokinase - metabolism Glucose Glucose-6-Phosphate - metabolism Homeostasis Humans Kinases Male Malonyl Coenzyme A - metabolism Middle Aged Mutation, Missense Polymorphism Polymorphism, Single Nucleotide Single-nucleotide polymorphism |
title | An Exome-Chip Association Analysis in Chinese Subjects Reveals a Functional Missense Variant of GCKR That Regulates FGF21 Levels |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A16%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Exome-Chip%20Association%20Analysis%20in%20Chinese%20Subjects%20Reveals%20a%20Functional%20Missense%20Variant%20of%20GCKR%20That%20Regulates%20FGF21%20Levels&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Cheung,%20Chloe%20Y%20Y&rft.date=2017-06&rft.volume=66&rft.issue=6&rft.spage=1723&rft.epage=1728&rft.pages=1723-1728&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db16-1384&rft_dat=%3Cproquest_cross%3E1932331414%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1932331414&rft_id=info:pmid/28385800&rfr_iscdi=true |