Evaluation of MRI for diagnosis of extraprostatic extension in prostate cancer

Purpose To assess the ability of magnetic resonance imaging (MRI) to diagnose extraprostatic extension (EPE) in prostate cancer. Materials and Methods With Institutional Review Board (IRB) approval, 149 men with 170 ≥0.5 mL tumors underwent preoperative 3T MRI followed by radical prostatectomy (RP)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetic resonance imaging 2018-01, Vol.47 (1), p.176-185
Hauptverfasser: Krishna, Satheesh, Lim, Christopher S., McInnes, Matthew D.F., Flood, Trevor A., Shabana, Wael M., Lim, Robert S., Schieda, Nicola
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 185
container_issue 1
container_start_page 176
container_title Journal of magnetic resonance imaging
container_volume 47
creator Krishna, Satheesh
Lim, Christopher S.
McInnes, Matthew D.F.
Flood, Trevor A.
Shabana, Wael M.
Lim, Robert S.
Schieda, Nicola
description Purpose To assess the ability of magnetic resonance imaging (MRI) to diagnose extraprostatic extension (EPE) in prostate cancer. Materials and Methods With Institutional Review Board (IRB) approval, 149 men with 170 ≥0.5 mL tumors underwent preoperative 3T MRI followed by radical prostatectomy (RP) between 2012–2015. Two blinded radiologists (R1/R2) assessed tumors using Prostate Imaging Reporting and Data System (PI‐RADS) v2, subjectively evaluated for the presence of EPE, measured tumor size, and length of capsular contact (LCC). A third blinded radiologist, using MRI‐RP‐maps, measured whole‐lesion: apparent diffusion coefficient (ADC) mean/centile and histogram features. Comparisons were performed using chi‐square, logistic regression, and receiver operator characteristic (ROC) analysis. Results The subjective EPE assessment showed high specificity (SPEC = 75.4/91.3% [R1/R2]), low sensitivity (SENS = 43.3/43.6% [R1/R2]), and area‐under (AU) ROC curve = 0.67 (confidence interval [CI] 0.61–0.73) R1 and 0.61 (CI 0.53–0.70) R2; (k = 0.33). PI‐RADS v2 scores were strongly associated with EPE (P 
doi_str_mv 10.1002/jmri.25729
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1885937716</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1885937716</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3939-e6840f3cfe3d0356e0baa4e01c0f99ece5d4a108188fc584ae7fe96be57f44083</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqWw4QNQJDYIKcWO7cReoqpAEQ8JwdpynTFKlUexE6B_j0MKCxasPB6dufYchI4JnhKMk4tV5YppwrNE7qAx4UkSJ1yku6HGnMZE4GyEDrxfYYylZHwfjRJBRSYFGaOH-bsuO90WTR01Nrp_WkS2cVFe6Ne68YXvm_DZOr12jW8DZ_or1L4fKOpo24bI6NqAO0R7VpcejrbnBL1czZ9nN_Hd4_VidnkXGyqpjCEVDFtqLNAcU54CXmrNABODrZRggOdMEyyIENZwwTRkFmS6BJ5ZxrCgE3Q25Ib33zrwraoKb6AsdQ1N51UY5JJmGUkDevoHXTWdq8PvFJEZZyIRsqfOB8qEhbwDq9auqLTbKIJVb1n1ltW35QCfbCO7ZQX5L_qjNQBkAD6KEjb_RKnbYHwI_QLVT4ez</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1975482896</pqid></control><display><type>article</type><title>Evaluation of MRI for diagnosis of extraprostatic extension in prostate cancer</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Online Library Free Content</source><creator>Krishna, Satheesh ; Lim, Christopher S. ; McInnes, Matthew D.F. ; Flood, Trevor A. ; Shabana, Wael M. ; Lim, Robert S. ; Schieda, Nicola</creator><creatorcontrib>Krishna, Satheesh ; Lim, Christopher S. ; McInnes, Matthew D.F. ; Flood, Trevor A. ; Shabana, Wael M. ; Lim, Robert S. ; Schieda, Nicola</creatorcontrib><description>Purpose To assess the ability of magnetic resonance imaging (MRI) to diagnose extraprostatic extension (EPE) in prostate cancer. Materials and Methods With Institutional Review Board (IRB) approval, 149 men with 170 ≥0.5 mL tumors underwent preoperative 3T MRI followed by radical prostatectomy (RP) between 2012–2015. Two blinded radiologists (R1/R2) assessed tumors using Prostate Imaging Reporting and Data System (PI‐RADS) v2, subjectively evaluated for the presence of EPE, measured tumor size, and length of capsular contact (LCC). A third blinded radiologist, using MRI‐RP‐maps, measured whole‐lesion: apparent diffusion coefficient (ADC) mean/centile and histogram features. Comparisons were performed using chi‐square, logistic regression, and receiver operator characteristic (ROC) analysis. Results The subjective EPE assessment showed high specificity (SPEC = 75.4/91.3% [R1/R2]), low sensitivity (SENS = 43.3/43.6% [R1/R2]), and area‐under (AU) ROC curve = 0.67 (confidence interval [CI] 0.61–0.73) R1 and 0.61 (CI 0.53–0.70) R2; (k = 0.33). PI‐RADS v2 scores were strongly associated with EPE (P &lt; 0.001 / P = 0.008; R1/R2) with AU‐ROC curve = 0.72 (0.64–0.79) R1 and 0.61 (0.53–0.70) R2; (k = 0.44). Tumors with EPE were larger (18.8 ± 7.8 [median 17, range 6–51] vs. 18.8 ± 4.9 [12, 6–28] mm) and had greater LCC (21.1 ± 14.9 [16, 1–85] vs. 13.6 ± 6.1 [11.5, 4–30] mm); P &lt; 0.001 and 0.002, respectively. AU‐ROC for size was 0.73 (0.64–0.80) and LCC was 0.69 (0.60–0.76), respectively. Optimal SENS/SPEC for diagnosis of EPE were: size ≥15 mm = 67.7/66.7% and LCC ≥11 mm = 84.9/44.8%. 10th‐centile ADC and ADC entropy were both associated with EPE (P = 0.02 and &lt; 0.001), with AU‐ROC = 0.56 (0.47–0.65) and 0.76 (0.69–0.83), respectively. Optimal SENS/SPEC for diagnosis of EPE with entropy ≥6.99 was 63.3/75.0%. 25th‐centile ADC trended towards being significantly lower with EPE (P = 0.06) with no difference in other ADC metrics (P = 0.25–0.88). Size, LCC, and ADC entropy improved sensitivity but reduced specificity compared with subjective analysis with no difference in overall accuracy (P = 0.38). Conclusion Measurements of tumor size, capsular contact, and ADC entropy improve sensitivity but reduce specificity for diagnosis of EPE compared to subjective assessment. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:176–185.</description><identifier>ISSN: 1053-1807</identifier><identifier>EISSN: 1522-2586</identifier><identifier>DOI: 10.1002/jmri.25729</identifier><identifier>PMID: 28387981</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Aged ; apparent diffusion coefficient (ADC) ; Cancer ; Cancer surgery ; Confidence intervals ; Diagnosis ; Diffusion coefficient ; Diffusion Magnetic Resonance Imaging ; Entropy ; extraprostatic extension ; Humans ; Magnetic resonance imaging ; Male ; Middle Aged ; MRI ; NMR ; Nuclear magnetic resonance ; Observer Variation ; PI‐RADS ; Preoperative Period ; Prostate - diagnostic imaging ; Prostate cancer ; Prostatectomy ; Prostatic Neoplasms - diagnostic imaging ; Prostatic Neoplasms - surgery ; Radiology ; Regression Analysis ; Reproducibility of Results ; Retrospective Studies ; ROC Curve ; Sensitivity ; Sensitivity analysis ; Sensitivity and Specificity ; Statistical analysis ; Subjective assessment ; texture analysis ; Tumors ; Urological surgery</subject><ispartof>Journal of magnetic resonance imaging, 2018-01, Vol.47 (1), p.176-185</ispartof><rights>2017 International Society for Magnetic Resonance in Medicine</rights><rights>2017 International Society for Magnetic Resonance in Medicine.</rights><rights>2018 International Society for Magnetic Resonance in Medicine</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3939-e6840f3cfe3d0356e0baa4e01c0f99ece5d4a108188fc584ae7fe96be57f44083</citedby><cites>FETCH-LOGICAL-c3939-e6840f3cfe3d0356e0baa4e01c0f99ece5d4a108188fc584ae7fe96be57f44083</cites><orcidid>0000-0003-1546-5620</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjmri.25729$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjmri.25729$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,27901,27902,45550,45551,46384,46808</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28387981$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Krishna, Satheesh</creatorcontrib><creatorcontrib>Lim, Christopher S.</creatorcontrib><creatorcontrib>McInnes, Matthew D.F.</creatorcontrib><creatorcontrib>Flood, Trevor A.</creatorcontrib><creatorcontrib>Shabana, Wael M.</creatorcontrib><creatorcontrib>Lim, Robert S.</creatorcontrib><creatorcontrib>Schieda, Nicola</creatorcontrib><title>Evaluation of MRI for diagnosis of extraprostatic extension in prostate cancer</title><title>Journal of magnetic resonance imaging</title><addtitle>J Magn Reson Imaging</addtitle><description>Purpose To assess the ability of magnetic resonance imaging (MRI) to diagnose extraprostatic extension (EPE) in prostate cancer. Materials and Methods With Institutional Review Board (IRB) approval, 149 men with 170 ≥0.5 mL tumors underwent preoperative 3T MRI followed by radical prostatectomy (RP) between 2012–2015. Two blinded radiologists (R1/R2) assessed tumors using Prostate Imaging Reporting and Data System (PI‐RADS) v2, subjectively evaluated for the presence of EPE, measured tumor size, and length of capsular contact (LCC). A third blinded radiologist, using MRI‐RP‐maps, measured whole‐lesion: apparent diffusion coefficient (ADC) mean/centile and histogram features. Comparisons were performed using chi‐square, logistic regression, and receiver operator characteristic (ROC) analysis. Results The subjective EPE assessment showed high specificity (SPEC = 75.4/91.3% [R1/R2]), low sensitivity (SENS = 43.3/43.6% [R1/R2]), and area‐under (AU) ROC curve = 0.67 (confidence interval [CI] 0.61–0.73) R1 and 0.61 (CI 0.53–0.70) R2; (k = 0.33). PI‐RADS v2 scores were strongly associated with EPE (P &lt; 0.001 / P = 0.008; R1/R2) with AU‐ROC curve = 0.72 (0.64–0.79) R1 and 0.61 (0.53–0.70) R2; (k = 0.44). Tumors with EPE were larger (18.8 ± 7.8 [median 17, range 6–51] vs. 18.8 ± 4.9 [12, 6–28] mm) and had greater LCC (21.1 ± 14.9 [16, 1–85] vs. 13.6 ± 6.1 [11.5, 4–30] mm); P &lt; 0.001 and 0.002, respectively. AU‐ROC for size was 0.73 (0.64–0.80) and LCC was 0.69 (0.60–0.76), respectively. Optimal SENS/SPEC for diagnosis of EPE were: size ≥15 mm = 67.7/66.7% and LCC ≥11 mm = 84.9/44.8%. 10th‐centile ADC and ADC entropy were both associated with EPE (P = 0.02 and &lt; 0.001), with AU‐ROC = 0.56 (0.47–0.65) and 0.76 (0.69–0.83), respectively. Optimal SENS/SPEC for diagnosis of EPE with entropy ≥6.99 was 63.3/75.0%. 25th‐centile ADC trended towards being significantly lower with EPE (P = 0.06) with no difference in other ADC metrics (P = 0.25–0.88). Size, LCC, and ADC entropy improved sensitivity but reduced specificity compared with subjective analysis with no difference in overall accuracy (P = 0.38). Conclusion Measurements of tumor size, capsular contact, and ADC entropy improve sensitivity but reduce specificity for diagnosis of EPE compared to subjective assessment. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:176–185.</description><subject>Aged</subject><subject>apparent diffusion coefficient (ADC)</subject><subject>Cancer</subject><subject>Cancer surgery</subject><subject>Confidence intervals</subject><subject>Diagnosis</subject><subject>Diffusion coefficient</subject><subject>Diffusion Magnetic Resonance Imaging</subject><subject>Entropy</subject><subject>extraprostatic extension</subject><subject>Humans</subject><subject>Magnetic resonance imaging</subject><subject>Male</subject><subject>Middle Aged</subject><subject>MRI</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Observer Variation</subject><subject>PI‐RADS</subject><subject>Preoperative Period</subject><subject>Prostate - diagnostic imaging</subject><subject>Prostate cancer</subject><subject>Prostatectomy</subject><subject>Prostatic Neoplasms - diagnostic imaging</subject><subject>Prostatic Neoplasms - surgery</subject><subject>Radiology</subject><subject>Regression Analysis</subject><subject>Reproducibility of Results</subject><subject>Retrospective Studies</subject><subject>ROC Curve</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Sensitivity and Specificity</subject><subject>Statistical analysis</subject><subject>Subjective assessment</subject><subject>texture analysis</subject><subject>Tumors</subject><subject>Urological surgery</subject><issn>1053-1807</issn><issn>1522-2586</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kMtOwzAQRS0EoqWw4QNQJDYIKcWO7cReoqpAEQ8JwdpynTFKlUexE6B_j0MKCxasPB6dufYchI4JnhKMk4tV5YppwrNE7qAx4UkSJ1yku6HGnMZE4GyEDrxfYYylZHwfjRJBRSYFGaOH-bsuO90WTR01Nrp_WkS2cVFe6Ne68YXvm_DZOr12jW8DZ_or1L4fKOpo24bI6NqAO0R7VpcejrbnBL1czZ9nN_Hd4_VidnkXGyqpjCEVDFtqLNAcU54CXmrNABODrZRggOdMEyyIENZwwTRkFmS6BJ5ZxrCgE3Q25Ib33zrwraoKb6AsdQ1N51UY5JJmGUkDevoHXTWdq8PvFJEZZyIRsqfOB8qEhbwDq9auqLTbKIJVb1n1ltW35QCfbCO7ZQX5L_qjNQBkAD6KEjb_RKnbYHwI_QLVT4ez</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Krishna, Satheesh</creator><creator>Lim, Christopher S.</creator><creator>McInnes, Matthew D.F.</creator><creator>Flood, Trevor A.</creator><creator>Shabana, Wael M.</creator><creator>Lim, Robert S.</creator><creator>Schieda, Nicola</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-1546-5620</orcidid></search><sort><creationdate>201801</creationdate><title>Evaluation of MRI for diagnosis of extraprostatic extension in prostate cancer</title><author>Krishna, Satheesh ; Lim, Christopher S. ; McInnes, Matthew D.F. ; Flood, Trevor A. ; Shabana, Wael M. ; Lim, Robert S. ; Schieda, Nicola</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3939-e6840f3cfe3d0356e0baa4e01c0f99ece5d4a108188fc584ae7fe96be57f44083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aged</topic><topic>apparent diffusion coefficient (ADC)</topic><topic>Cancer</topic><topic>Cancer surgery</topic><topic>Confidence intervals</topic><topic>Diagnosis</topic><topic>Diffusion coefficient</topic><topic>Diffusion Magnetic Resonance Imaging</topic><topic>Entropy</topic><topic>extraprostatic extension</topic><topic>Humans</topic><topic>Magnetic resonance imaging</topic><topic>Male</topic><topic>Middle Aged</topic><topic>MRI</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Observer Variation</topic><topic>PI‐RADS</topic><topic>Preoperative Period</topic><topic>Prostate - diagnostic imaging</topic><topic>Prostate cancer</topic><topic>Prostatectomy</topic><topic>Prostatic Neoplasms - diagnostic imaging</topic><topic>Prostatic Neoplasms - surgery</topic><topic>Radiology</topic><topic>Regression Analysis</topic><topic>Reproducibility of Results</topic><topic>Retrospective Studies</topic><topic>ROC Curve</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Sensitivity and Specificity</topic><topic>Statistical analysis</topic><topic>Subjective assessment</topic><topic>texture analysis</topic><topic>Tumors</topic><topic>Urological surgery</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Krishna, Satheesh</creatorcontrib><creatorcontrib>Lim, Christopher S.</creatorcontrib><creatorcontrib>McInnes, Matthew D.F.</creatorcontrib><creatorcontrib>Flood, Trevor A.</creatorcontrib><creatorcontrib>Shabana, Wael M.</creatorcontrib><creatorcontrib>Lim, Robert S.</creatorcontrib><creatorcontrib>Schieda, Nicola</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of magnetic resonance imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Krishna, Satheesh</au><au>Lim, Christopher S.</au><au>McInnes, Matthew D.F.</au><au>Flood, Trevor A.</au><au>Shabana, Wael M.</au><au>Lim, Robert S.</au><au>Schieda, Nicola</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of MRI for diagnosis of extraprostatic extension in prostate cancer</atitle><jtitle>Journal of magnetic resonance imaging</jtitle><addtitle>J Magn Reson Imaging</addtitle><date>2018-01</date><risdate>2018</risdate><volume>47</volume><issue>1</issue><spage>176</spage><epage>185</epage><pages>176-185</pages><issn>1053-1807</issn><eissn>1522-2586</eissn><abstract>Purpose To assess the ability of magnetic resonance imaging (MRI) to diagnose extraprostatic extension (EPE) in prostate cancer. Materials and Methods With Institutional Review Board (IRB) approval, 149 men with 170 ≥0.5 mL tumors underwent preoperative 3T MRI followed by radical prostatectomy (RP) between 2012–2015. Two blinded radiologists (R1/R2) assessed tumors using Prostate Imaging Reporting and Data System (PI‐RADS) v2, subjectively evaluated for the presence of EPE, measured tumor size, and length of capsular contact (LCC). A third blinded radiologist, using MRI‐RP‐maps, measured whole‐lesion: apparent diffusion coefficient (ADC) mean/centile and histogram features. Comparisons were performed using chi‐square, logistic regression, and receiver operator characteristic (ROC) analysis. Results The subjective EPE assessment showed high specificity (SPEC = 75.4/91.3% [R1/R2]), low sensitivity (SENS = 43.3/43.6% [R1/R2]), and area‐under (AU) ROC curve = 0.67 (confidence interval [CI] 0.61–0.73) R1 and 0.61 (CI 0.53–0.70) R2; (k = 0.33). PI‐RADS v2 scores were strongly associated with EPE (P &lt; 0.001 / P = 0.008; R1/R2) with AU‐ROC curve = 0.72 (0.64–0.79) R1 and 0.61 (0.53–0.70) R2; (k = 0.44). Tumors with EPE were larger (18.8 ± 7.8 [median 17, range 6–51] vs. 18.8 ± 4.9 [12, 6–28] mm) and had greater LCC (21.1 ± 14.9 [16, 1–85] vs. 13.6 ± 6.1 [11.5, 4–30] mm); P &lt; 0.001 and 0.002, respectively. AU‐ROC for size was 0.73 (0.64–0.80) and LCC was 0.69 (0.60–0.76), respectively. Optimal SENS/SPEC for diagnosis of EPE were: size ≥15 mm = 67.7/66.7% and LCC ≥11 mm = 84.9/44.8%. 10th‐centile ADC and ADC entropy were both associated with EPE (P = 0.02 and &lt; 0.001), with AU‐ROC = 0.56 (0.47–0.65) and 0.76 (0.69–0.83), respectively. Optimal SENS/SPEC for diagnosis of EPE with entropy ≥6.99 was 63.3/75.0%. 25th‐centile ADC trended towards being significantly lower with EPE (P = 0.06) with no difference in other ADC metrics (P = 0.25–0.88). Size, LCC, and ADC entropy improved sensitivity but reduced specificity compared with subjective analysis with no difference in overall accuracy (P = 0.38). Conclusion Measurements of tumor size, capsular contact, and ADC entropy improve sensitivity but reduce specificity for diagnosis of EPE compared to subjective assessment. Level of Evidence: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;47:176–185.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28387981</pmid><doi>10.1002/jmri.25729</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-1546-5620</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1053-1807
ispartof Journal of magnetic resonance imaging, 2018-01, Vol.47 (1), p.176-185
issn 1053-1807
1522-2586
language eng
recordid cdi_proquest_miscellaneous_1885937716
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Online Library Free Content
subjects Aged
apparent diffusion coefficient (ADC)
Cancer
Cancer surgery
Confidence intervals
Diagnosis
Diffusion coefficient
Diffusion Magnetic Resonance Imaging
Entropy
extraprostatic extension
Humans
Magnetic resonance imaging
Male
Middle Aged
MRI
NMR
Nuclear magnetic resonance
Observer Variation
PI‐RADS
Preoperative Period
Prostate - diagnostic imaging
Prostate cancer
Prostatectomy
Prostatic Neoplasms - diagnostic imaging
Prostatic Neoplasms - surgery
Radiology
Regression Analysis
Reproducibility of Results
Retrospective Studies
ROC Curve
Sensitivity
Sensitivity analysis
Sensitivity and Specificity
Statistical analysis
Subjective assessment
texture analysis
Tumors
Urological surgery
title Evaluation of MRI for diagnosis of extraprostatic extension in prostate cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20MRI%20for%20diagnosis%20of%20extraprostatic%20extension%20in%20prostate%20cancer&rft.jtitle=Journal%20of%20magnetic%20resonance%20imaging&rft.au=Krishna,%20Satheesh&rft.date=2018-01&rft.volume=47&rft.issue=1&rft.spage=176&rft.epage=185&rft.pages=176-185&rft.issn=1053-1807&rft.eissn=1522-2586&rft_id=info:doi/10.1002/jmri.25729&rft_dat=%3Cproquest_cross%3E1885937716%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1975482896&rft_id=info:pmid/28387981&rfr_iscdi=true