Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation
Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic...
Gespeichert in:
Veröffentlicht in: | Current opinion in rheumatology 2017-07, Vol.29 (4), p.402-409 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 409 |
---|---|
container_issue | 4 |
container_start_page | 402 |
container_title | Current opinion in rheumatology |
container_volume | 29 |
creator | Campbell, Graeme Michael Glüer, Claus-C |
description | Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics.
In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge.
Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future. |
doi_str_mv | 10.1097/BOR.0000000000000405 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884462217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884462217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ece7274fe34580c0884a0e91c9ba0dd78b06501435ab13a1c7a8398cf085c763</originalsourceid><addsrcrecordid>eNpdUEtLAzEQDqLYWv0HInv04NbJZrPJetPiCwoF7cHbks3OYnRfJqnSf2-0VcS5zPC9Bj5CjilMKeTi_GrxMIW_kwLfIWPKGY2zPGO74Q5YLAWlI3Lg3AsATXKa7JNRIpnIgOdj8vT4ig161UTKOXSuxc5HH8Y_R7XpjMcosN-Y6lSzdsZdRDZA76rTeBYNxteqaVxgq8h0Hu1gQ5g3fXdI9gLl8Gi7J2R5c72c3cXzxe397HIea8alj1GjSERaI0u5BA1SpgowpzovFVSVkCVkHGjKuCopU1QLJVkudQ2Sa5GxCTndxA62f1uh80VrnMamUR32K1fQEJhmSUJFkKYbqba9cxbrYrCmVXZdUCi-Ki1CpcX_SoPtZPthVbZY_Zp-OmSfum5yMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884462217</pqid></control><display><type>article</type><title>Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Campbell, Graeme Michael ; Glüer, Claus-C</creator><creatorcontrib>Campbell, Graeme Michael ; Glüer, Claus-C</creatorcontrib><description>Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics.
In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge.
Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.</description><identifier>ISSN: 1040-8711</identifier><identifier>EISSN: 1531-6963</identifier><identifier>DOI: 10.1097/BOR.0000000000000405</identifier><identifier>PMID: 28376059</identifier><language>eng</language><publisher>United States</publisher><subject>Biomechanical Phenomena ; Bone and Bones - diagnostic imaging ; Bone and Bones - physiology ; Bone Density ; Cadaver ; Finite Element Analysis ; Fractures, Bone - epidemiology ; Humans ; Models, Biological ; Prostheses and Implants ; Risk Assessment ; Tomography, X-Ray Computed - methods ; Weight-Bearing</subject><ispartof>Current opinion in rheumatology, 2017-07, Vol.29 (4), p.402-409</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-ece7274fe34580c0884a0e91c9ba0dd78b06501435ab13a1c7a8398cf085c763</citedby><cites>FETCH-LOGICAL-c358t-ece7274fe34580c0884a0e91c9ba0dd78b06501435ab13a1c7a8398cf085c763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28376059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campbell, Graeme Michael</creatorcontrib><creatorcontrib>Glüer, Claus-C</creatorcontrib><title>Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation</title><title>Current opinion in rheumatology</title><addtitle>Curr Opin Rheumatol</addtitle><description>Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics.
In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge.
Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.</description><subject>Biomechanical Phenomena</subject><subject>Bone and Bones - diagnostic imaging</subject><subject>Bone and Bones - physiology</subject><subject>Bone Density</subject><subject>Cadaver</subject><subject>Finite Element Analysis</subject><subject>Fractures, Bone - epidemiology</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Prostheses and Implants</subject><subject>Risk Assessment</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Weight-Bearing</subject><issn>1040-8711</issn><issn>1531-6963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUEtLAzEQDqLYWv0HInv04NbJZrPJetPiCwoF7cHbks3OYnRfJqnSf2-0VcS5zPC9Bj5CjilMKeTi_GrxMIW_kwLfIWPKGY2zPGO74Q5YLAWlI3Lg3AsATXKa7JNRIpnIgOdj8vT4ig161UTKOXSuxc5HH8Y_R7XpjMcosN-Y6lSzdsZdRDZA76rTeBYNxteqaVxgq8h0Hu1gQ5g3fXdI9gLl8Gi7J2R5c72c3cXzxe397HIea8alj1GjSERaI0u5BA1SpgowpzovFVSVkCVkHGjKuCopU1QLJVkudQ2Sa5GxCTndxA62f1uh80VrnMamUR32K1fQEJhmSUJFkKYbqba9cxbrYrCmVXZdUCi-Ki1CpcX_SoPtZPthVbZY_Zp-OmSfum5yMQ</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Campbell, Graeme Michael</creator><creator>Glüer, Claus-C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation</title><author>Campbell, Graeme Michael ; Glüer, Claus-C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ece7274fe34580c0884a0e91c9ba0dd78b06501435ab13a1c7a8398cf085c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biomechanical Phenomena</topic><topic>Bone and Bones - diagnostic imaging</topic><topic>Bone and Bones - physiology</topic><topic>Bone Density</topic><topic>Cadaver</topic><topic>Finite Element Analysis</topic><topic>Fractures, Bone - epidemiology</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Prostheses and Implants</topic><topic>Risk Assessment</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Weight-Bearing</topic><toplevel>online_resources</toplevel><creatorcontrib>Campbell, Graeme Michael</creatorcontrib><creatorcontrib>Glüer, Claus-C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in rheumatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, Graeme Michael</au><au>Glüer, Claus-C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation</atitle><jtitle>Current opinion in rheumatology</jtitle><addtitle>Curr Opin Rheumatol</addtitle><date>2017-07</date><risdate>2017</risdate><volume>29</volume><issue>4</issue><spage>402</spage><epage>409</epage><pages>402-409</pages><issn>1040-8711</issn><eissn>1531-6963</eissn><abstract>Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics.
In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge.
Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.</abstract><cop>United States</cop><pmid>28376059</pmid><doi>10.1097/BOR.0000000000000405</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1040-8711 |
ispartof | Current opinion in rheumatology, 2017-07, Vol.29 (4), p.402-409 |
issn | 1040-8711 1531-6963 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884462217 |
source | MEDLINE; Journals@Ovid Complete |
subjects | Biomechanical Phenomena Bone and Bones - diagnostic imaging Bone and Bones - physiology Bone Density Cadaver Finite Element Analysis Fractures, Bone - epidemiology Humans Models, Biological Prostheses and Implants Risk Assessment Tomography, X-Ray Computed - methods Weight-Bearing |
title | Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skeletal%20assessment%20with%20finite%20element%20analysis:%20relevance,%20pitfalls%20and%20interpretation&rft.jtitle=Current%20opinion%20in%20rheumatology&rft.au=Campbell,%20Graeme%20Michael&rft.date=2017-07&rft.volume=29&rft.issue=4&rft.spage=402&rft.epage=409&rft.pages=402-409&rft.issn=1040-8711&rft.eissn=1531-6963&rft_id=info:doi/10.1097/BOR.0000000000000405&rft_dat=%3Cproquest_cross%3E1884462217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884462217&rft_id=info:pmid/28376059&rfr_iscdi=true |