Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation

Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in rheumatology 2017-07, Vol.29 (4), p.402-409
Hauptverfasser: Campbell, Graeme Michael, Glüer, Claus-C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 409
container_issue 4
container_start_page 402
container_title Current opinion in rheumatology
container_volume 29
creator Campbell, Graeme Michael
Glüer, Claus-C
description Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.
doi_str_mv 10.1097/BOR.0000000000000405
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884462217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884462217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c358t-ece7274fe34580c0884a0e91c9ba0dd78b06501435ab13a1c7a8398cf085c763</originalsourceid><addsrcrecordid>eNpdUEtLAzEQDqLYWv0HInv04NbJZrPJetPiCwoF7cHbks3OYnRfJqnSf2-0VcS5zPC9Bj5CjilMKeTi_GrxMIW_kwLfIWPKGY2zPGO74Q5YLAWlI3Lg3AsATXKa7JNRIpnIgOdj8vT4ig161UTKOXSuxc5HH8Y_R7XpjMcosN-Y6lSzdsZdRDZA76rTeBYNxteqaVxgq8h0Hu1gQ5g3fXdI9gLl8Gi7J2R5c72c3cXzxe397HIea8alj1GjSERaI0u5BA1SpgowpzovFVSVkCVkHGjKuCopU1QLJVkudQ2Sa5GxCTndxA62f1uh80VrnMamUR32K1fQEJhmSUJFkKYbqba9cxbrYrCmVXZdUCi-Ki1CpcX_SoPtZPthVbZY_Zp-OmSfum5yMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884462217</pqid></control><display><type>article</type><title>Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><creator>Campbell, Graeme Michael ; Glüer, Claus-C</creator><creatorcontrib>Campbell, Graeme Michael ; Glüer, Claus-C</creatorcontrib><description>Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.</description><identifier>ISSN: 1040-8711</identifier><identifier>EISSN: 1531-6963</identifier><identifier>DOI: 10.1097/BOR.0000000000000405</identifier><identifier>PMID: 28376059</identifier><language>eng</language><publisher>United States</publisher><subject>Biomechanical Phenomena ; Bone and Bones - diagnostic imaging ; Bone and Bones - physiology ; Bone Density ; Cadaver ; Finite Element Analysis ; Fractures, Bone - epidemiology ; Humans ; Models, Biological ; Prostheses and Implants ; Risk Assessment ; Tomography, X-Ray Computed - methods ; Weight-Bearing</subject><ispartof>Current opinion in rheumatology, 2017-07, Vol.29 (4), p.402-409</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c358t-ece7274fe34580c0884a0e91c9ba0dd78b06501435ab13a1c7a8398cf085c763</citedby><cites>FETCH-LOGICAL-c358t-ece7274fe34580c0884a0e91c9ba0dd78b06501435ab13a1c7a8398cf085c763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28376059$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campbell, Graeme Michael</creatorcontrib><creatorcontrib>Glüer, Claus-C</creatorcontrib><title>Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation</title><title>Current opinion in rheumatology</title><addtitle>Curr Opin Rheumatol</addtitle><description>Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.</description><subject>Biomechanical Phenomena</subject><subject>Bone and Bones - diagnostic imaging</subject><subject>Bone and Bones - physiology</subject><subject>Bone Density</subject><subject>Cadaver</subject><subject>Finite Element Analysis</subject><subject>Fractures, Bone - epidemiology</subject><subject>Humans</subject><subject>Models, Biological</subject><subject>Prostheses and Implants</subject><subject>Risk Assessment</subject><subject>Tomography, X-Ray Computed - methods</subject><subject>Weight-Bearing</subject><issn>1040-8711</issn><issn>1531-6963</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdUEtLAzEQDqLYWv0HInv04NbJZrPJetPiCwoF7cHbks3OYnRfJqnSf2-0VcS5zPC9Bj5CjilMKeTi_GrxMIW_kwLfIWPKGY2zPGO74Q5YLAWlI3Lg3AsATXKa7JNRIpnIgOdj8vT4ig161UTKOXSuxc5HH8Y_R7XpjMcosN-Y6lSzdsZdRDZA76rTeBYNxteqaVxgq8h0Hu1gQ5g3fXdI9gLl8Gi7J2R5c72c3cXzxe397HIea8alj1GjSERaI0u5BA1SpgowpzovFVSVkCVkHGjKuCopU1QLJVkudQ2Sa5GxCTndxA62f1uh80VrnMamUR32K1fQEJhmSUJFkKYbqba9cxbrYrCmVXZdUCi-Ki1CpcX_SoPtZPthVbZY_Zp-OmSfum5yMQ</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Campbell, Graeme Michael</creator><creator>Glüer, Claus-C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201707</creationdate><title>Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation</title><author>Campbell, Graeme Michael ; Glüer, Claus-C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c358t-ece7274fe34580c0884a0e91c9ba0dd78b06501435ab13a1c7a8398cf085c763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Biomechanical Phenomena</topic><topic>Bone and Bones - diagnostic imaging</topic><topic>Bone and Bones - physiology</topic><topic>Bone Density</topic><topic>Cadaver</topic><topic>Finite Element Analysis</topic><topic>Fractures, Bone - epidemiology</topic><topic>Humans</topic><topic>Models, Biological</topic><topic>Prostheses and Implants</topic><topic>Risk Assessment</topic><topic>Tomography, X-Ray Computed - methods</topic><topic>Weight-Bearing</topic><toplevel>online_resources</toplevel><creatorcontrib>Campbell, Graeme Michael</creatorcontrib><creatorcontrib>Glüer, Claus-C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Current opinion in rheumatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campbell, Graeme Michael</au><au>Glüer, Claus-C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation</atitle><jtitle>Current opinion in rheumatology</jtitle><addtitle>Curr Opin Rheumatol</addtitle><date>2017-07</date><risdate>2017</risdate><volume>29</volume><issue>4</issue><spage>402</spage><epage>409</epage><pages>402-409</pages><issn>1040-8711</issn><eissn>1531-6963</eissn><abstract>Finite element models simulate the mechanical response of bone under load, enabling noninvasive assessment of strength. Models generated from quantitative computed tomography (QCT) incorporate the geometry and spatial distribution of bone mineral density (BMD) to simulate physiological and traumatic loads as well as orthopaedic implant behaviour. The present review discusses the current strengths and weakness of finite element models for application to skeletal biomechanics. In cadaver studies, finite element models provide better estimations of strength compared to BMD. Data from clinical studies are encouraging; however, the superiority of finite element models over BMD measures for fracture prediction has not been shown conclusively, and may be sex and site dependent. Therapeutic effects on bone strength are larger than for BMD; however, model validation has only been performed on untreated bone. High-resolution modalities and novel image processing methods may enhance the structural representation and predictive ability. Despite extensive use of finite element models to study orthopaedic implant stability, accurate simulation of the bone-implant interface and fracture progression remains a significant challenge. Skeletal finite element models provide noninvasive assessments of strength and implant stability. Improved structural representation and implant surface interaction may enable more accurate models of fragility in the future.</abstract><cop>United States</cop><pmid>28376059</pmid><doi>10.1097/BOR.0000000000000405</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1040-8711
ispartof Current opinion in rheumatology, 2017-07, Vol.29 (4), p.402-409
issn 1040-8711
1531-6963
language eng
recordid cdi_proquest_miscellaneous_1884462217
source MEDLINE; Journals@Ovid Complete
subjects Biomechanical Phenomena
Bone and Bones - diagnostic imaging
Bone and Bones - physiology
Bone Density
Cadaver
Finite Element Analysis
Fractures, Bone - epidemiology
Humans
Models, Biological
Prostheses and Implants
Risk Assessment
Tomography, X-Ray Computed - methods
Weight-Bearing
title Skeletal assessment with finite element analysis: relevance, pitfalls and interpretation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A28%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Skeletal%20assessment%20with%20finite%20element%20analysis:%20relevance,%20pitfalls%20and%20interpretation&rft.jtitle=Current%20opinion%20in%20rheumatology&rft.au=Campbell,%20Graeme%20Michael&rft.date=2017-07&rft.volume=29&rft.issue=4&rft.spage=402&rft.epage=409&rft.pages=402-409&rft.issn=1040-8711&rft.eissn=1531-6963&rft_id=info:doi/10.1097/BOR.0000000000000405&rft_dat=%3Cproquest_cross%3E1884462217%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884462217&rft_id=info:pmid/28376059&rfr_iscdi=true