Ultrasound Standard Plane Detection Using a Composite Neural Network Framework

Ultrasound (US) imaging is a widely used screening tool for obstetric examination and diagnosis. Accurate acquisition of fetal standard planes with key anatomical structures is very crucial for substantial biometric measurement and diagnosis. However, the standard plane acquisition is a labor-intens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2017-06, Vol.47 (6), p.1576-1586
Hauptverfasser: Chen, Hao, Wu, Lingyun, Dou, Qi, Qin, Jing, Li, Shengli, Cheng, Jie-Zhi, Ni, Dong, Heng, Pheng-Ann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1586
container_issue 6
container_start_page 1576
container_title IEEE transactions on cybernetics
container_volume 47
creator Chen, Hao
Wu, Lingyun
Dou, Qi
Qin, Jing
Li, Shengli
Cheng, Jie-Zhi
Ni, Dong
Heng, Pheng-Ann
description Ultrasound (US) imaging is a widely used screening tool for obstetric examination and diagnosis. Accurate acquisition of fetal standard planes with key anatomical structures is very crucial for substantial biometric measurement and diagnosis. However, the standard plane acquisition is a labor-intensive task and requires operator equipped with a thorough knowledge of fetal anatomy. Therefore, automatic approaches are highly demanded in clinical practice to alleviate the workload and boost the examination efficiency. The automatic detection of standard planes from US videos remains a challenging problem due to the high intraclass and low interclass variations of standard planes, and the relatively low image quality. Unlike previous studies which were specifically designed for individual anatomical standard planes, respectively, we present a general framework for the automatic identification of different standard planes from US videos. Distinct from conventional way that devises hand-crafted visual features for detection, our framework explores in- and between-plane feature learning with a novel composite framework of the convolutional and recurrent neural networks. To further address the issue of limited training data, a multitask learning framework is implemented to exploit common knowledge across detection tasks of distinctive standard planes for the augmentation of feature learning. Extensive experiments have been conducted on hundreds of US fetus videos to corroborate the better efficacy of the proposed framework on the difficult standard plane detection problem.
doi_str_mv 10.1109/TCYB.2017.2685080
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884168831</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>7890445</ieee_id><sourcerecordid>1901463787</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-f457bbc7ed36cc50e855188c81dea8f6668cc3e113029dcdc6839c953b47dda23</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMottT-ABFkwYuX1mSzm4-jVqtCqYLtwVNIk6ls3d3UZBfx35ultQdzmSF55mXyIHRO8JgQLG8Wk_e7cYoJH6dM5FjgI9RPCROjNOX58aFnvIeGIWxwPCJeSXGKeqmgnHBJ-2i-LBuvg2trm7w1urba2-S11DUk99CAaQpXJ8tQ1B-JTiau2rpQNJDMofW6jKX5dv4zmXpdQdedoZO1LgMM93WAltOHxeRpNHt5fJ7czkaGZrIZrbOcr1aGg6XMmByDyHMihBHEghZrxpgwhgIhFKfSGmuYoNLInK4ybq1O6QBd73K33n21EBpVFcFA2S3u2qBiWBY_KyiJ6NU_dONaX8ftFJGYZIxywSNFdpTxLgQPa7X1RaX9jyJYdb5V51t1vtXed5y53Ce3qwrsYeLPbgQudkABAIdnLiTOspz-Ah4Mgzo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1901463787</pqid></control><display><type>article</type><title>Ultrasound Standard Plane Detection Using a Composite Neural Network Framework</title><source>IEEE Electronic Library (IEL)</source><creator>Chen, Hao ; Wu, Lingyun ; Dou, Qi ; Qin, Jing ; Li, Shengli ; Cheng, Jie-Zhi ; Ni, Dong ; Heng, Pheng-Ann</creator><creatorcontrib>Chen, Hao ; Wu, Lingyun ; Dou, Qi ; Qin, Jing ; Li, Shengli ; Cheng, Jie-Zhi ; Ni, Dong ; Heng, Pheng-Ann</creatorcontrib><description>Ultrasound (US) imaging is a widely used screening tool for obstetric examination and diagnosis. Accurate acquisition of fetal standard planes with key anatomical structures is very crucial for substantial biometric measurement and diagnosis. However, the standard plane acquisition is a labor-intensive task and requires operator equipped with a thorough knowledge of fetal anatomy. Therefore, automatic approaches are highly demanded in clinical practice to alleviate the workload and boost the examination efficiency. The automatic detection of standard planes from US videos remains a challenging problem due to the high intraclass and low interclass variations of standard planes, and the relatively low image quality. Unlike previous studies which were specifically designed for individual anatomical standard planes, respectively, we present a general framework for the automatic identification of different standard planes from US videos. Distinct from conventional way that devises hand-crafted visual features for detection, our framework explores in- and between-plane feature learning with a novel composite framework of the convolutional and recurrent neural networks. To further address the issue of limited training data, a multitask learning framework is implemented to exploit common knowledge across detection tasks of distinctive standard planes for the augmentation of feature learning. Extensive experiments have been conducted on hundreds of US fetus videos to corroborate the better efficacy of the proposed framework on the difficult standard plane detection problem.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2017.2685080</identifier><identifier>PMID: 28371793</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aircraft detection ; Algorithms ; Anatomy ; Augmentation ; Biomedical imaging ; Convolutional neural network (CNN) ; deep learning ; Diagnosis ; Feature extraction ; Female ; Fetus ; Fetus - diagnostic imaging ; Humans ; Image Processing, Computer-Assisted - methods ; Image quality ; knowledge transfer ; Learning ; Machine learning ; Neural networks ; Neural Networks (Computer) ; Planes ; Pregnancy ; recurrent neural network (RNN) ; Recurrent neural networks ; standard plane ; Training data ; Ultrasonic imaging ; Ultrasonography, Prenatal - methods ; ultrasound (US) ; Video Recording - methods ; Videos</subject><ispartof>IEEE transactions on cybernetics, 2017-06, Vol.47 (6), p.1576-1586</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-f457bbc7ed36cc50e855188c81dea8f6668cc3e113029dcdc6839c953b47dda23</citedby><cites>FETCH-LOGICAL-c349t-f457bbc7ed36cc50e855188c81dea8f6668cc3e113029dcdc6839c953b47dda23</cites><orcidid>0000-0003-3446-8173 ; 0000-0002-8400-3780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/7890445$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/7890445$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28371793$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Wu, Lingyun</creatorcontrib><creatorcontrib>Dou, Qi</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Li, Shengli</creatorcontrib><creatorcontrib>Cheng, Jie-Zhi</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><title>Ultrasound Standard Plane Detection Using a Composite Neural Network Framework</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Ultrasound (US) imaging is a widely used screening tool for obstetric examination and diagnosis. Accurate acquisition of fetal standard planes with key anatomical structures is very crucial for substantial biometric measurement and diagnosis. However, the standard plane acquisition is a labor-intensive task and requires operator equipped with a thorough knowledge of fetal anatomy. Therefore, automatic approaches are highly demanded in clinical practice to alleviate the workload and boost the examination efficiency. The automatic detection of standard planes from US videos remains a challenging problem due to the high intraclass and low interclass variations of standard planes, and the relatively low image quality. Unlike previous studies which were specifically designed for individual anatomical standard planes, respectively, we present a general framework for the automatic identification of different standard planes from US videos. Distinct from conventional way that devises hand-crafted visual features for detection, our framework explores in- and between-plane feature learning with a novel composite framework of the convolutional and recurrent neural networks. To further address the issue of limited training data, a multitask learning framework is implemented to exploit common knowledge across detection tasks of distinctive standard planes for the augmentation of feature learning. Extensive experiments have been conducted on hundreds of US fetus videos to corroborate the better efficacy of the proposed framework on the difficult standard plane detection problem.</description><subject>Aircraft detection</subject><subject>Algorithms</subject><subject>Anatomy</subject><subject>Augmentation</subject><subject>Biomedical imaging</subject><subject>Convolutional neural network (CNN)</subject><subject>deep learning</subject><subject>Diagnosis</subject><subject>Feature extraction</subject><subject>Female</subject><subject>Fetus</subject><subject>Fetus - diagnostic imaging</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted - methods</subject><subject>Image quality</subject><subject>knowledge transfer</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Planes</subject><subject>Pregnancy</subject><subject>recurrent neural network (RNN)</subject><subject>Recurrent neural networks</subject><subject>standard plane</subject><subject>Training data</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography, Prenatal - methods</subject><subject>ultrasound (US)</subject><subject>Video Recording - methods</subject><subject>Videos</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LAzEQhoMottT-ABFkwYuX1mSzm4-jVqtCqYLtwVNIk6ls3d3UZBfx35ultQdzmSF55mXyIHRO8JgQLG8Wk_e7cYoJH6dM5FjgI9RPCROjNOX58aFnvIeGIWxwPCJeSXGKeqmgnHBJ-2i-LBuvg2trm7w1urba2-S11DUk99CAaQpXJ8tQ1B-JTiau2rpQNJDMofW6jKX5dv4zmXpdQdedoZO1LgMM93WAltOHxeRpNHt5fJ7czkaGZrIZrbOcr1aGg6XMmByDyHMihBHEghZrxpgwhgIhFKfSGmuYoNLInK4ybq1O6QBd73K33n21EBpVFcFA2S3u2qBiWBY_KyiJ6NU_dONaX8ftFJGYZIxywSNFdpTxLgQPa7X1RaX9jyJYdb5V51t1vtXed5y53Ce3qwrsYeLPbgQudkABAIdnLiTOspz-Ah4Mgzo</recordid><startdate>20170601</startdate><enddate>20170601</enddate><creator>Chen, Hao</creator><creator>Wu, Lingyun</creator><creator>Dou, Qi</creator><creator>Qin, Jing</creator><creator>Li, Shengli</creator><creator>Cheng, Jie-Zhi</creator><creator>Ni, Dong</creator><creator>Heng, Pheng-Ann</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3446-8173</orcidid><orcidid>https://orcid.org/0000-0002-8400-3780</orcidid></search><sort><creationdate>20170601</creationdate><title>Ultrasound Standard Plane Detection Using a Composite Neural Network Framework</title><author>Chen, Hao ; Wu, Lingyun ; Dou, Qi ; Qin, Jing ; Li, Shengli ; Cheng, Jie-Zhi ; Ni, Dong ; Heng, Pheng-Ann</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-f457bbc7ed36cc50e855188c81dea8f6668cc3e113029dcdc6839c953b47dda23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aircraft detection</topic><topic>Algorithms</topic><topic>Anatomy</topic><topic>Augmentation</topic><topic>Biomedical imaging</topic><topic>Convolutional neural network (CNN)</topic><topic>deep learning</topic><topic>Diagnosis</topic><topic>Feature extraction</topic><topic>Female</topic><topic>Fetus</topic><topic>Fetus - diagnostic imaging</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted - methods</topic><topic>Image quality</topic><topic>knowledge transfer</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Planes</topic><topic>Pregnancy</topic><topic>recurrent neural network (RNN)</topic><topic>Recurrent neural networks</topic><topic>standard plane</topic><topic>Training data</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography, Prenatal - methods</topic><topic>ultrasound (US)</topic><topic>Video Recording - methods</topic><topic>Videos</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Hao</creatorcontrib><creatorcontrib>Wu, Lingyun</creatorcontrib><creatorcontrib>Dou, Qi</creatorcontrib><creatorcontrib>Qin, Jing</creatorcontrib><creatorcontrib>Li, Shengli</creatorcontrib><creatorcontrib>Cheng, Jie-Zhi</creatorcontrib><creatorcontrib>Ni, Dong</creatorcontrib><creatorcontrib>Heng, Pheng-Ann</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chen, Hao</au><au>Wu, Lingyun</au><au>Dou, Qi</au><au>Qin, Jing</au><au>Li, Shengli</au><au>Cheng, Jie-Zhi</au><au>Ni, Dong</au><au>Heng, Pheng-Ann</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound Standard Plane Detection Using a Composite Neural Network Framework</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2017-06-01</date><risdate>2017</risdate><volume>47</volume><issue>6</issue><spage>1576</spage><epage>1586</epage><pages>1576-1586</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Ultrasound (US) imaging is a widely used screening tool for obstetric examination and diagnosis. Accurate acquisition of fetal standard planes with key anatomical structures is very crucial for substantial biometric measurement and diagnosis. However, the standard plane acquisition is a labor-intensive task and requires operator equipped with a thorough knowledge of fetal anatomy. Therefore, automatic approaches are highly demanded in clinical practice to alleviate the workload and boost the examination efficiency. The automatic detection of standard planes from US videos remains a challenging problem due to the high intraclass and low interclass variations of standard planes, and the relatively low image quality. Unlike previous studies which were specifically designed for individual anatomical standard planes, respectively, we present a general framework for the automatic identification of different standard planes from US videos. Distinct from conventional way that devises hand-crafted visual features for detection, our framework explores in- and between-plane feature learning with a novel composite framework of the convolutional and recurrent neural networks. To further address the issue of limited training data, a multitask learning framework is implemented to exploit common knowledge across detection tasks of distinctive standard planes for the augmentation of feature learning. Extensive experiments have been conducted on hundreds of US fetus videos to corroborate the better efficacy of the proposed framework on the difficult standard plane detection problem.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>28371793</pmid><doi>10.1109/TCYB.2017.2685080</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3446-8173</orcidid><orcidid>https://orcid.org/0000-0002-8400-3780</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2017-06, Vol.47 (6), p.1576-1586
issn 2168-2267
2168-2275
language eng
recordid cdi_proquest_miscellaneous_1884168831
source IEEE Electronic Library (IEL)
subjects Aircraft detection
Algorithms
Anatomy
Augmentation
Biomedical imaging
Convolutional neural network (CNN)
deep learning
Diagnosis
Feature extraction
Female
Fetus
Fetus - diagnostic imaging
Humans
Image Processing, Computer-Assisted - methods
Image quality
knowledge transfer
Learning
Machine learning
Neural networks
Neural Networks (Computer)
Planes
Pregnancy
recurrent neural network (RNN)
Recurrent neural networks
standard plane
Training data
Ultrasonic imaging
Ultrasonography, Prenatal - methods
ultrasound (US)
Video Recording - methods
Videos
title Ultrasound Standard Plane Detection Using a Composite Neural Network Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T16%3A40%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound%20Standard%20Plane%20Detection%20Using%20a%20Composite%20Neural%20Network%20Framework&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Chen,%20Hao&rft.date=2017-06-01&rft.volume=47&rft.issue=6&rft.spage=1576&rft.epage=1586&rft.pages=1576-1586&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2017.2685080&rft_dat=%3Cproquest_RIE%3E1901463787%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1901463787&rft_id=info:pmid/28371793&rft_ieee_id=7890445&rfr_iscdi=true