Ultrasound Standard Plane Detection Using a Composite Neural Network Framework

Ultrasound (US) imaging is a widely used screening tool for obstetric examination and diagnosis. Accurate acquisition of fetal standard planes with key anatomical structures is very crucial for substantial biometric measurement and diagnosis. However, the standard plane acquisition is a labor-intens...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2017-06, Vol.47 (6), p.1576-1586
Hauptverfasser: Chen, Hao, Wu, Lingyun, Dou, Qi, Qin, Jing, Li, Shengli, Cheng, Jie-Zhi, Ni, Dong, Heng, Pheng-Ann
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultrasound (US) imaging is a widely used screening tool for obstetric examination and diagnosis. Accurate acquisition of fetal standard planes with key anatomical structures is very crucial for substantial biometric measurement and diagnosis. However, the standard plane acquisition is a labor-intensive task and requires operator equipped with a thorough knowledge of fetal anatomy. Therefore, automatic approaches are highly demanded in clinical practice to alleviate the workload and boost the examination efficiency. The automatic detection of standard planes from US videos remains a challenging problem due to the high intraclass and low interclass variations of standard planes, and the relatively low image quality. Unlike previous studies which were specifically designed for individual anatomical standard planes, respectively, we present a general framework for the automatic identification of different standard planes from US videos. Distinct from conventional way that devises hand-crafted visual features for detection, our framework explores in- and between-plane feature learning with a novel composite framework of the convolutional and recurrent neural networks. To further address the issue of limited training data, a multitask learning framework is implemented to exploit common knowledge across detection tasks of distinctive standard planes for the augmentation of feature learning. Extensive experiments have been conducted on hundreds of US fetus videos to corroborate the better efficacy of the proposed framework on the difficult standard plane detection problem.
ISSN:2168-2267
2168-2275
DOI:10.1109/TCYB.2017.2685080