Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance
Delivering and releasing anticancer agents directly to their subcellular targets of action in a controlled manner are almost the ultimate goal of pharmacology, but it is challenging. In recent decades, plenty of efforts have been made to send drugs to tumor tissue or even specifically to cancer cell...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2017-05, Vol.13 (20), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 20 |
container_start_page | |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 13 |
creator | Kang, Bin Zheng, Ming‐Bo Song, Pei Chen, Ai‐Ping Wei, Ji‐Wu Xu, Jing‐Juan Shi, Yi Chen, Hong‐Yuan |
description | Delivering and releasing anticancer agents directly to their subcellular targets of action in a controlled manner are almost the ultimate goal of pharmacology, but it is challenging. In recent decades, plenty of efforts have been made to send drugs to tumor tissue or even specifically to cancer cells; however, at the subcellular scale, cancer cells have multiple cunning ways to hinder drugs from reaching their final action targets. Here, we demonstrate a strategy to bypass the last defense of cancer drug resistance by contolling the drug transportation and release at subcellular scale. We developed a platform based on ultrasound‐degradable mesoporous nanosilicon, which allows drug delivery towards, ultrasound controlled drug release into the cell nucleus. This strategy altered the drug distribution within cells and remarkably enhanced the drug accumulation ratio at the action target, i.e. nucleus. In vitro and in vivo studies proved that this strategy reduced the drug dosage by an order of magnitude, prolonged drug retention and amplified therapeutic efficacy in tumor‐bearing mice. These results offer new insights into bypassing cancer drug resistance through transport and release drugs directly to their action targets in a controlled manner.
Ultrasound‐controlled subcellular drug delivery is achieved with ultrasound‐degradable mesoporous nanosilicon as a drug payload platform. This drug delivery strategy significantly amplifies therapeutic efficacy in vitro and in vivo by altering drug distribution within cells and increasing drug accumulation within the nucleus where their targets of action reside. |
doi_str_mv | 10.1002/smll.201604228 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884168786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884168786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4108-c2da9c2ade9341d201dd310a70175c01ab5a54f3101d89937f8933bc852e17b3</originalsourceid><addsrcrecordid>eNqF0c9uEzEQBnALgWgpXHusVuLSS4LH3l3bR5qWP1LaSiScV7O2U23lrFPPbqvceASekSfBUUqQuHCyZf38aUYfY6fAp8C5-EDrEKaCQ81LIfQLdgw1yEmthXl5uAM_Ym-I7jmXIEr1mh0JLRU3Wh2zx8XYWh_CGDD9-vFzYTH44jKNd8UyYU-bmIbiscPiexgSUhx7l9Wlv0vosM302lPMKI5U3GAfqQudjX0xxOJiu0GiYoa99Wkf-c1TR8Pu4S17tcJA_t3zecKWn66Wsy-T-e3nr7OP84ktgeuJFQ6NFei8kSW4vKdzEjgqDqqyHLCtsCpX-QmcNkaqlTZStlZXwoNq5Qk738duUnwYPQ3NuqPdutj7PHIDWpdQa6XrTN__Q-_jmPo8XFbGKF1pVWY13SubIlHyq2aTujWmbQO82RXS7AppDoXkD2fPsWO79u7A_zSQgdmDpy747X_imsX1fP43_Ddni5p9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899785874</pqid></control><display><type>article</type><title>Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Kang, Bin ; Zheng, Ming‐Bo ; Song, Pei ; Chen, Ai‐Ping ; Wei, Ji‐Wu ; Xu, Jing‐Juan ; Shi, Yi ; Chen, Hong‐Yuan</creator><creatorcontrib>Kang, Bin ; Zheng, Ming‐Bo ; Song, Pei ; Chen, Ai‐Ping ; Wei, Ji‐Wu ; Xu, Jing‐Juan ; Shi, Yi ; Chen, Hong‐Yuan</creatorcontrib><description>Delivering and releasing anticancer agents directly to their subcellular targets of action in a controlled manner are almost the ultimate goal of pharmacology, but it is challenging. In recent decades, plenty of efforts have been made to send drugs to tumor tissue or even specifically to cancer cells; however, at the subcellular scale, cancer cells have multiple cunning ways to hinder drugs from reaching their final action targets. Here, we demonstrate a strategy to bypass the last defense of cancer drug resistance by contolling the drug transportation and release at subcellular scale. We developed a platform based on ultrasound‐degradable mesoporous nanosilicon, which allows drug delivery towards, ultrasound controlled drug release into the cell nucleus. This strategy altered the drug distribution within cells and remarkably enhanced the drug accumulation ratio at the action target, i.e. nucleus. In vitro and in vivo studies proved that this strategy reduced the drug dosage by an order of magnitude, prolonged drug retention and amplified therapeutic efficacy in tumor‐bearing mice. These results offer new insights into bypassing cancer drug resistance through transport and release drugs directly to their action targets in a controlled manner.
Ultrasound‐controlled subcellular drug delivery is achieved with ultrasound‐degradable mesoporous nanosilicon as a drug payload platform. This drug delivery strategy significantly amplifies therapeutic efficacy in vitro and in vivo by altering drug distribution within cells and increasing drug accumulation within the nucleus where their targets of action reside.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201604228</identifier><identifier>PMID: 28370987</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Anticancer properties ; Biological Transport ; Cancer ; Cell Line, Tumor ; Cell Nucleus - metabolism ; Cell Survival ; drug delivery ; Drug Delivery Systems ; Drug Liberation ; Drug resistance ; Drug Resistance, Neoplasm ; Humans ; In vivo methods and tests ; mesoporous nanosilicon ; Mice ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanotechnology ; Neoplasms - drug therapy ; Neoplasms - pathology ; Nuclei (cytology) ; Pharmacology ; Porosity ; Silicon Dioxide - chemistry ; Strategy ; Subcellular Fractions ; subcellular transport ; Tumors ; Ultrasonic imaging ; Ultrasonography ; ultrasound</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2017-05, Vol.13 (20), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4108-c2da9c2ade9341d201dd310a70175c01ab5a54f3101d89937f8933bc852e17b3</citedby><cites>FETCH-LOGICAL-c4108-c2da9c2ade9341d201dd310a70175c01ab5a54f3101d89937f8933bc852e17b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201604228$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201604228$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28370987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Bin</creatorcontrib><creatorcontrib>Zheng, Ming‐Bo</creatorcontrib><creatorcontrib>Song, Pei</creatorcontrib><creatorcontrib>Chen, Ai‐Ping</creatorcontrib><creatorcontrib>Wei, Ji‐Wu</creatorcontrib><creatorcontrib>Xu, Jing‐Juan</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Chen, Hong‐Yuan</creatorcontrib><title>Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Delivering and releasing anticancer agents directly to their subcellular targets of action in a controlled manner are almost the ultimate goal of pharmacology, but it is challenging. In recent decades, plenty of efforts have been made to send drugs to tumor tissue or even specifically to cancer cells; however, at the subcellular scale, cancer cells have multiple cunning ways to hinder drugs from reaching their final action targets. Here, we demonstrate a strategy to bypass the last defense of cancer drug resistance by contolling the drug transportation and release at subcellular scale. We developed a platform based on ultrasound‐degradable mesoporous nanosilicon, which allows drug delivery towards, ultrasound controlled drug release into the cell nucleus. This strategy altered the drug distribution within cells and remarkably enhanced the drug accumulation ratio at the action target, i.e. nucleus. In vitro and in vivo studies proved that this strategy reduced the drug dosage by an order of magnitude, prolonged drug retention and amplified therapeutic efficacy in tumor‐bearing mice. These results offer new insights into bypassing cancer drug resistance through transport and release drugs directly to their action targets in a controlled manner.
Ultrasound‐controlled subcellular drug delivery is achieved with ultrasound‐degradable mesoporous nanosilicon as a drug payload platform. This drug delivery strategy significantly amplifies therapeutic efficacy in vitro and in vivo by altering drug distribution within cells and increasing drug accumulation within the nucleus where their targets of action reside.</description><subject>Animals</subject><subject>Anticancer properties</subject><subject>Biological Transport</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Survival</subject><subject>drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Drug Liberation</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>mesoporous nanosilicon</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanotechnology</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Nuclei (cytology)</subject><subject>Pharmacology</subject><subject>Porosity</subject><subject>Silicon Dioxide - chemistry</subject><subject>Strategy</subject><subject>Subcellular Fractions</subject><subject>subcellular transport</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>ultrasound</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9uEzEQBnALgWgpXHusVuLSS4LH3l3bR5qWP1LaSiScV7O2U23lrFPPbqvceASekSfBUUqQuHCyZf38aUYfY6fAp8C5-EDrEKaCQ81LIfQLdgw1yEmthXl5uAM_Ym-I7jmXIEr1mh0JLRU3Wh2zx8XYWh_CGDD9-vFzYTH44jKNd8UyYU-bmIbiscPiexgSUhx7l9Wlv0vosM302lPMKI5U3GAfqQudjX0xxOJiu0GiYoa99Wkf-c1TR8Pu4S17tcJA_t3zecKWn66Wsy-T-e3nr7OP84ktgeuJFQ6NFei8kSW4vKdzEjgqDqqyHLCtsCpX-QmcNkaqlTZStlZXwoNq5Qk738duUnwYPQ3NuqPdutj7PHIDWpdQa6XrTN__Q-_jmPo8XFbGKF1pVWY13SubIlHyq2aTujWmbQO82RXS7AppDoXkD2fPsWO79u7A_zSQgdmDpy747X_imsX1fP43_Ddni5p9</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Kang, Bin</creator><creator>Zheng, Ming‐Bo</creator><creator>Song, Pei</creator><creator>Chen, Ai‐Ping</creator><creator>Wei, Ji‐Wu</creator><creator>Xu, Jing‐Juan</creator><creator>Shi, Yi</creator><creator>Chen, Hong‐Yuan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201705</creationdate><title>Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance</title><author>Kang, Bin ; Zheng, Ming‐Bo ; Song, Pei ; Chen, Ai‐Ping ; Wei, Ji‐Wu ; Xu, Jing‐Juan ; Shi, Yi ; Chen, Hong‐Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4108-c2da9c2ade9341d201dd310a70175c01ab5a54f3101d89937f8933bc852e17b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Anticancer properties</topic><topic>Biological Transport</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Survival</topic><topic>drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Drug Liberation</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>mesoporous nanosilicon</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanotechnology</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Nuclei (cytology)</topic><topic>Pharmacology</topic><topic>Porosity</topic><topic>Silicon Dioxide - chemistry</topic><topic>Strategy</topic><topic>Subcellular Fractions</topic><topic>subcellular transport</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Bin</creatorcontrib><creatorcontrib>Zheng, Ming‐Bo</creatorcontrib><creatorcontrib>Song, Pei</creatorcontrib><creatorcontrib>Chen, Ai‐Ping</creatorcontrib><creatorcontrib>Wei, Ji‐Wu</creatorcontrib><creatorcontrib>Xu, Jing‐Juan</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Chen, Hong‐Yuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Bin</au><au>Zheng, Ming‐Bo</au><au>Song, Pei</au><au>Chen, Ai‐Ping</au><au>Wei, Ji‐Wu</au><au>Xu, Jing‐Juan</au><au>Shi, Yi</au><au>Chen, Hong‐Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2017-05</date><risdate>2017</risdate><volume>13</volume><issue>20</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Delivering and releasing anticancer agents directly to their subcellular targets of action in a controlled manner are almost the ultimate goal of pharmacology, but it is challenging. In recent decades, plenty of efforts have been made to send drugs to tumor tissue or even specifically to cancer cells; however, at the subcellular scale, cancer cells have multiple cunning ways to hinder drugs from reaching their final action targets. Here, we demonstrate a strategy to bypass the last defense of cancer drug resistance by contolling the drug transportation and release at subcellular scale. We developed a platform based on ultrasound‐degradable mesoporous nanosilicon, which allows drug delivery towards, ultrasound controlled drug release into the cell nucleus. This strategy altered the drug distribution within cells and remarkably enhanced the drug accumulation ratio at the action target, i.e. nucleus. In vitro and in vivo studies proved that this strategy reduced the drug dosage by an order of magnitude, prolonged drug retention and amplified therapeutic efficacy in tumor‐bearing mice. These results offer new insights into bypassing cancer drug resistance through transport and release drugs directly to their action targets in a controlled manner.
Ultrasound‐controlled subcellular drug delivery is achieved with ultrasound‐degradable mesoporous nanosilicon as a drug payload platform. This drug delivery strategy significantly amplifies therapeutic efficacy in vitro and in vivo by altering drug distribution within cells and increasing drug accumulation within the nucleus where their targets of action reside.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28370987</pmid><doi>10.1002/smll.201604228</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2017-05, Vol.13 (20), p.n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884168786 |
source | Wiley Online Library - AutoHoldings Journals; MEDLINE |
subjects | Animals Anticancer properties Biological Transport Cancer Cell Line, Tumor Cell Nucleus - metabolism Cell Survival drug delivery Drug Delivery Systems Drug Liberation Drug resistance Drug Resistance, Neoplasm Humans In vivo methods and tests mesoporous nanosilicon Mice Nanoparticles - chemistry Nanoparticles - ultrastructure Nanotechnology Neoplasms - drug therapy Neoplasms - pathology Nuclei (cytology) Pharmacology Porosity Silicon Dioxide - chemistry Strategy Subcellular Fractions subcellular transport Tumors Ultrasonic imaging Ultrasonography ultrasound |
title | Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subcellular%E2%80%90Scale%20Drug%20Transport%20via%20Ultrasound%E2%80%90Degradable%20Mesoporous%20Nanosilicon%20to%20Bypass%20Cancer%20Drug%20Resistance&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Kang,%20Bin&rft.date=2017-05&rft.volume=13&rft.issue=20&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201604228&rft_dat=%3Cproquest_cross%3E1884168786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899785874&rft_id=info:pmid/28370987&rfr_iscdi=true |