Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance

Delivering and releasing anticancer agents directly to their subcellular targets of action in a controlled manner are almost the ultimate goal of pharmacology, but it is challenging. In recent decades, plenty of efforts have been made to send drugs to tumor tissue or even specifically to cancer cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2017-05, Vol.13 (20), p.n/a
Hauptverfasser: Kang, Bin, Zheng, Ming‐Bo, Song, Pei, Chen, Ai‐Ping, Wei, Ji‐Wu, Xu, Jing‐Juan, Shi, Yi, Chen, Hong‐Yuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 20
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 13
creator Kang, Bin
Zheng, Ming‐Bo
Song, Pei
Chen, Ai‐Ping
Wei, Ji‐Wu
Xu, Jing‐Juan
Shi, Yi
Chen, Hong‐Yuan
description Delivering and releasing anticancer agents directly to their subcellular targets of action in a controlled manner are almost the ultimate goal of pharmacology, but it is challenging. In recent decades, plenty of efforts have been made to send drugs to tumor tissue or even specifically to cancer cells; however, at the subcellular scale, cancer cells have multiple cunning ways to hinder drugs from reaching their final action targets. Here, we demonstrate a strategy to bypass the last defense of cancer drug resistance by contolling the drug transportation and release at subcellular scale. We developed a platform based on ultrasound‐degradable mesoporous nanosilicon, which allows drug delivery towards, ultrasound controlled drug release into the cell nucleus. This strategy altered the drug distribution within cells and remarkably enhanced the drug accumulation ratio at the action target, i.e. nucleus. In vitro and in vivo studies proved that this strategy reduced the drug dosage by an order of magnitude, prolonged drug retention and amplified therapeutic efficacy in tumor‐bearing mice. These results offer new insights into bypassing cancer drug resistance through transport and release drugs directly to their action targets in a controlled manner. Ultrasound‐controlled subcellular drug delivery is achieved with ultrasound‐degradable mesoporous nanosilicon as a drug payload platform. This drug delivery strategy significantly amplifies therapeutic efficacy in vitro and in vivo by altering drug distribution within cells and increasing drug accumulation within the nucleus where their targets of action reside.
doi_str_mv 10.1002/smll.201604228
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884168786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884168786</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4108-c2da9c2ade9341d201dd310a70175c01ab5a54f3101d89937f8933bc852e17b3</originalsourceid><addsrcrecordid>eNqF0c9uEzEQBnALgWgpXHusVuLSS4LH3l3bR5qWP1LaSiScV7O2U23lrFPPbqvceASekSfBUUqQuHCyZf38aUYfY6fAp8C5-EDrEKaCQ81LIfQLdgw1yEmthXl5uAM_Ym-I7jmXIEr1mh0JLRU3Wh2zx8XYWh_CGDD9-vFzYTH44jKNd8UyYU-bmIbiscPiexgSUhx7l9Wlv0vosM302lPMKI5U3GAfqQudjX0xxOJiu0GiYoa99Wkf-c1TR8Pu4S17tcJA_t3zecKWn66Wsy-T-e3nr7OP84ktgeuJFQ6NFei8kSW4vKdzEjgqDqqyHLCtsCpX-QmcNkaqlTZStlZXwoNq5Qk738duUnwYPQ3NuqPdutj7PHIDWpdQa6XrTN__Q-_jmPo8XFbGKF1pVWY13SubIlHyq2aTujWmbQO82RXS7AppDoXkD2fPsWO79u7A_zSQgdmDpy747X_imsX1fP43_Ddni5p9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1899785874</pqid></control><display><type>article</type><title>Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance</title><source>Wiley Online Library - AutoHoldings Journals</source><source>MEDLINE</source><creator>Kang, Bin ; Zheng, Ming‐Bo ; Song, Pei ; Chen, Ai‐Ping ; Wei, Ji‐Wu ; Xu, Jing‐Juan ; Shi, Yi ; Chen, Hong‐Yuan</creator><creatorcontrib>Kang, Bin ; Zheng, Ming‐Bo ; Song, Pei ; Chen, Ai‐Ping ; Wei, Ji‐Wu ; Xu, Jing‐Juan ; Shi, Yi ; Chen, Hong‐Yuan</creatorcontrib><description>Delivering and releasing anticancer agents directly to their subcellular targets of action in a controlled manner are almost the ultimate goal of pharmacology, but it is challenging. In recent decades, plenty of efforts have been made to send drugs to tumor tissue or even specifically to cancer cells; however, at the subcellular scale, cancer cells have multiple cunning ways to hinder drugs from reaching their final action targets. Here, we demonstrate a strategy to bypass the last defense of cancer drug resistance by contolling the drug transportation and release at subcellular scale. We developed a platform based on ultrasound‐degradable mesoporous nanosilicon, which allows drug delivery towards, ultrasound controlled drug release into the cell nucleus. This strategy altered the drug distribution within cells and remarkably enhanced the drug accumulation ratio at the action target, i.e. nucleus. In vitro and in vivo studies proved that this strategy reduced the drug dosage by an order of magnitude, prolonged drug retention and amplified therapeutic efficacy in tumor‐bearing mice. These results offer new insights into bypassing cancer drug resistance through transport and release drugs directly to their action targets in a controlled manner. Ultrasound‐controlled subcellular drug delivery is achieved with ultrasound‐degradable mesoporous nanosilicon as a drug payload platform. This drug delivery strategy significantly amplifies therapeutic efficacy in vitro and in vivo by altering drug distribution within cells and increasing drug accumulation within the nucleus where their targets of action reside.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201604228</identifier><identifier>PMID: 28370987</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Animals ; Anticancer properties ; Biological Transport ; Cancer ; Cell Line, Tumor ; Cell Nucleus - metabolism ; Cell Survival ; drug delivery ; Drug Delivery Systems ; Drug Liberation ; Drug resistance ; Drug Resistance, Neoplasm ; Humans ; In vivo methods and tests ; mesoporous nanosilicon ; Mice ; Nanoparticles - chemistry ; Nanoparticles - ultrastructure ; Nanotechnology ; Neoplasms - drug therapy ; Neoplasms - pathology ; Nuclei (cytology) ; Pharmacology ; Porosity ; Silicon Dioxide - chemistry ; Strategy ; Subcellular Fractions ; subcellular transport ; Tumors ; Ultrasonic imaging ; Ultrasonography ; ultrasound</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2017-05, Vol.13 (20), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4108-c2da9c2ade9341d201dd310a70175c01ab5a54f3101d89937f8933bc852e17b3</citedby><cites>FETCH-LOGICAL-c4108-c2da9c2ade9341d201dd310a70175c01ab5a54f3101d89937f8933bc852e17b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201604228$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201604228$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28370987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kang, Bin</creatorcontrib><creatorcontrib>Zheng, Ming‐Bo</creatorcontrib><creatorcontrib>Song, Pei</creatorcontrib><creatorcontrib>Chen, Ai‐Ping</creatorcontrib><creatorcontrib>Wei, Ji‐Wu</creatorcontrib><creatorcontrib>Xu, Jing‐Juan</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Chen, Hong‐Yuan</creatorcontrib><title>Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Delivering and releasing anticancer agents directly to their subcellular targets of action in a controlled manner are almost the ultimate goal of pharmacology, but it is challenging. In recent decades, plenty of efforts have been made to send drugs to tumor tissue or even specifically to cancer cells; however, at the subcellular scale, cancer cells have multiple cunning ways to hinder drugs from reaching their final action targets. Here, we demonstrate a strategy to bypass the last defense of cancer drug resistance by contolling the drug transportation and release at subcellular scale. We developed a platform based on ultrasound‐degradable mesoporous nanosilicon, which allows drug delivery towards, ultrasound controlled drug release into the cell nucleus. This strategy altered the drug distribution within cells and remarkably enhanced the drug accumulation ratio at the action target, i.e. nucleus. In vitro and in vivo studies proved that this strategy reduced the drug dosage by an order of magnitude, prolonged drug retention and amplified therapeutic efficacy in tumor‐bearing mice. These results offer new insights into bypassing cancer drug resistance through transport and release drugs directly to their action targets in a controlled manner. Ultrasound‐controlled subcellular drug delivery is achieved with ultrasound‐degradable mesoporous nanosilicon as a drug payload platform. This drug delivery strategy significantly amplifies therapeutic efficacy in vitro and in vivo by altering drug distribution within cells and increasing drug accumulation within the nucleus where their targets of action reside.</description><subject>Animals</subject><subject>Anticancer properties</subject><subject>Biological Transport</subject><subject>Cancer</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - metabolism</subject><subject>Cell Survival</subject><subject>drug delivery</subject><subject>Drug Delivery Systems</subject><subject>Drug Liberation</subject><subject>Drug resistance</subject><subject>Drug Resistance, Neoplasm</subject><subject>Humans</subject><subject>In vivo methods and tests</subject><subject>mesoporous nanosilicon</subject><subject>Mice</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - ultrastructure</subject><subject>Nanotechnology</subject><subject>Neoplasms - drug therapy</subject><subject>Neoplasms - pathology</subject><subject>Nuclei (cytology)</subject><subject>Pharmacology</subject><subject>Porosity</subject><subject>Silicon Dioxide - chemistry</subject><subject>Strategy</subject><subject>Subcellular Fractions</subject><subject>subcellular transport</subject><subject>Tumors</subject><subject>Ultrasonic imaging</subject><subject>Ultrasonography</subject><subject>ultrasound</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9uEzEQBnALgWgpXHusVuLSS4LH3l3bR5qWP1LaSiScV7O2U23lrFPPbqvceASekSfBUUqQuHCyZf38aUYfY6fAp8C5-EDrEKaCQ81LIfQLdgw1yEmthXl5uAM_Ym-I7jmXIEr1mh0JLRU3Wh2zx8XYWh_CGDD9-vFzYTH44jKNd8UyYU-bmIbiscPiexgSUhx7l9Wlv0vosM302lPMKI5U3GAfqQudjX0xxOJiu0GiYoa99Wkf-c1TR8Pu4S17tcJA_t3zecKWn66Wsy-T-e3nr7OP84ktgeuJFQ6NFei8kSW4vKdzEjgqDqqyHLCtsCpX-QmcNkaqlTZStlZXwoNq5Qk738duUnwYPQ3NuqPdutj7PHIDWpdQa6XrTN__Q-_jmPo8XFbGKF1pVWY13SubIlHyq2aTujWmbQO82RXS7AppDoXkD2fPsWO79u7A_zSQgdmDpy747X_imsX1fP43_Ddni5p9</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Kang, Bin</creator><creator>Zheng, Ming‐Bo</creator><creator>Song, Pei</creator><creator>Chen, Ai‐Ping</creator><creator>Wei, Ji‐Wu</creator><creator>Xu, Jing‐Juan</creator><creator>Shi, Yi</creator><creator>Chen, Hong‐Yuan</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201705</creationdate><title>Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance</title><author>Kang, Bin ; Zheng, Ming‐Bo ; Song, Pei ; Chen, Ai‐Ping ; Wei, Ji‐Wu ; Xu, Jing‐Juan ; Shi, Yi ; Chen, Hong‐Yuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4108-c2da9c2ade9341d201dd310a70175c01ab5a54f3101d89937f8933bc852e17b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animals</topic><topic>Anticancer properties</topic><topic>Biological Transport</topic><topic>Cancer</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - metabolism</topic><topic>Cell Survival</topic><topic>drug delivery</topic><topic>Drug Delivery Systems</topic><topic>Drug Liberation</topic><topic>Drug resistance</topic><topic>Drug Resistance, Neoplasm</topic><topic>Humans</topic><topic>In vivo methods and tests</topic><topic>mesoporous nanosilicon</topic><topic>Mice</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - ultrastructure</topic><topic>Nanotechnology</topic><topic>Neoplasms - drug therapy</topic><topic>Neoplasms - pathology</topic><topic>Nuclei (cytology)</topic><topic>Pharmacology</topic><topic>Porosity</topic><topic>Silicon Dioxide - chemistry</topic><topic>Strategy</topic><topic>Subcellular Fractions</topic><topic>subcellular transport</topic><topic>Tumors</topic><topic>Ultrasonic imaging</topic><topic>Ultrasonography</topic><topic>ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kang, Bin</creatorcontrib><creatorcontrib>Zheng, Ming‐Bo</creatorcontrib><creatorcontrib>Song, Pei</creatorcontrib><creatorcontrib>Chen, Ai‐Ping</creatorcontrib><creatorcontrib>Wei, Ji‐Wu</creatorcontrib><creatorcontrib>Xu, Jing‐Juan</creatorcontrib><creatorcontrib>Shi, Yi</creatorcontrib><creatorcontrib>Chen, Hong‐Yuan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kang, Bin</au><au>Zheng, Ming‐Bo</au><au>Song, Pei</au><au>Chen, Ai‐Ping</au><au>Wei, Ji‐Wu</au><au>Xu, Jing‐Juan</au><au>Shi, Yi</au><au>Chen, Hong‐Yuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2017-05</date><risdate>2017</risdate><volume>13</volume><issue>20</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Delivering and releasing anticancer agents directly to their subcellular targets of action in a controlled manner are almost the ultimate goal of pharmacology, but it is challenging. In recent decades, plenty of efforts have been made to send drugs to tumor tissue or even specifically to cancer cells; however, at the subcellular scale, cancer cells have multiple cunning ways to hinder drugs from reaching their final action targets. Here, we demonstrate a strategy to bypass the last defense of cancer drug resistance by contolling the drug transportation and release at subcellular scale. We developed a platform based on ultrasound‐degradable mesoporous nanosilicon, which allows drug delivery towards, ultrasound controlled drug release into the cell nucleus. This strategy altered the drug distribution within cells and remarkably enhanced the drug accumulation ratio at the action target, i.e. nucleus. In vitro and in vivo studies proved that this strategy reduced the drug dosage by an order of magnitude, prolonged drug retention and amplified therapeutic efficacy in tumor‐bearing mice. These results offer new insights into bypassing cancer drug resistance through transport and release drugs directly to their action targets in a controlled manner. Ultrasound‐controlled subcellular drug delivery is achieved with ultrasound‐degradable mesoporous nanosilicon as a drug payload platform. This drug delivery strategy significantly amplifies therapeutic efficacy in vitro and in vivo by altering drug distribution within cells and increasing drug accumulation within the nucleus where their targets of action reside.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28370987</pmid><doi>10.1002/smll.201604228</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2017-05, Vol.13 (20), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1884168786
source Wiley Online Library - AutoHoldings Journals; MEDLINE
subjects Animals
Anticancer properties
Biological Transport
Cancer
Cell Line, Tumor
Cell Nucleus - metabolism
Cell Survival
drug delivery
Drug Delivery Systems
Drug Liberation
Drug resistance
Drug Resistance, Neoplasm
Humans
In vivo methods and tests
mesoporous nanosilicon
Mice
Nanoparticles - chemistry
Nanoparticles - ultrastructure
Nanotechnology
Neoplasms - drug therapy
Neoplasms - pathology
Nuclei (cytology)
Pharmacology
Porosity
Silicon Dioxide - chemistry
Strategy
Subcellular Fractions
subcellular transport
Tumors
Ultrasonic imaging
Ultrasonography
ultrasound
title Subcellular‐Scale Drug Transport via Ultrasound‐Degradable Mesoporous Nanosilicon to Bypass Cancer Drug Resistance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T06%3A41%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subcellular%E2%80%90Scale%20Drug%20Transport%20via%20Ultrasound%E2%80%90Degradable%20Mesoporous%20Nanosilicon%20to%20Bypass%20Cancer%20Drug%20Resistance&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Kang,%20Bin&rft.date=2017-05&rft.volume=13&rft.issue=20&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201604228&rft_dat=%3Cproquest_cross%3E1884168786%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1899785874&rft_id=info:pmid/28370987&rfr_iscdi=true