Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids

Rational engineering of one-dimensional (1D) self-assembled aggregates to produce desired materials for versatile functions remains a challenge. In this work, we report the noncovalent modulation of 1D aggregates at the micro/nanoscale using a coassembly protocol. Aromatic amino acids were employed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2017-04, Vol.11 (4), p.4206-4216
Hauptverfasser: Xing, Pengyao, Li, Peizhou, Chen, Hongzhong, Hao, Aiyou, Zhao, Yanli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4216
container_issue 4
container_start_page 4206
container_title ACS nano
container_volume 11
creator Xing, Pengyao
Li, Peizhou
Chen, Hongzhong
Hao, Aiyou
Zhao, Yanli
description Rational engineering of one-dimensional (1D) self-assembled aggregates to produce desired materials for versatile functions remains a challenge. In this work, we report the noncovalent modulation of 1D aggregates at the micro/nanoscale using a coassembly protocol. Aromatic amino acids were employed as the model building blocks, and melamine (Mm) behaves as a modulator to form coassembly arrays with aromatic amino acids selectively. The selective self-assembly behavior between aromatic amino acids and Mm allows distinguishing and detecting Mm and aromatic amino acids from their analogues in macroscopic and microscopic scales. Dimensions and sizes of fibrous aggregates prepared from different amino acids show two opposite pathways from pristine assemblies to coassemblies induced by the addition of Mm. This pathway complexity could be controlled by the molecular conformation determined by α-positioned substituents. The developed hypothesis presents an excellent expansibility to other substrates, which may guide us to rationally design and screen 1D materials with different dimensions and sizes including the production of high-quality self-standing hydrogels.
doi_str_mv 10.1021/acsnano.7b01161
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884167408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884167408</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-8742afcc89f4ae2677d733ac7dcad814ec1e31ed1ce8184174ba11ad9377c14a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EolCY2ZBHJBSai9PYHUvFlwSUASS26GI7ravELnYq6L_H0NKN6W543ud0LyFnkF5BmsEAZbBo3RWvUoAC9sgRjFiRpKJ439_tQ-iR4xAWaTrkgheHpJcJVoghz47I15tV2ocOrTJ2Rl-wm3_imk5cu2z0l-nW1NV06mdojaRPRno3eI4Ha1NpT--8--zm1Fh6v1bezbRNrl30qZjHEHRbNb_5sXctdlEwbo11dCyNCifkoMYm6NPt7JO325vXyX3yOL17mIwfE2SMdYngeYa1lGJU56izgnPFGUPJlUQlINcSNAOtQGoBIgeeVwiAasQ4l5Aj65OLjXfp3cdKh65sTZC6adBqtwoliJgqeJ6KiA42aPwyBK_rculNi35dQlr-1F1u6y63dcfE-Va-qlqtdvxfvxG43AAxWS7cytv467-6by4LjUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884167408</pqid></control><display><type>article</type><title>Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Xing, Pengyao ; Li, Peizhou ; Chen, Hongzhong ; Hao, Aiyou ; Zhao, Yanli</creator><creatorcontrib>Xing, Pengyao ; Li, Peizhou ; Chen, Hongzhong ; Hao, Aiyou ; Zhao, Yanli</creatorcontrib><description>Rational engineering of one-dimensional (1D) self-assembled aggregates to produce desired materials for versatile functions remains a challenge. In this work, we report the noncovalent modulation of 1D aggregates at the micro/nanoscale using a coassembly protocol. Aromatic amino acids were employed as the model building blocks, and melamine (Mm) behaves as a modulator to form coassembly arrays with aromatic amino acids selectively. The selective self-assembly behavior between aromatic amino acids and Mm allows distinguishing and detecting Mm and aromatic amino acids from their analogues in macroscopic and microscopic scales. Dimensions and sizes of fibrous aggregates prepared from different amino acids show two opposite pathways from pristine assemblies to coassemblies induced by the addition of Mm. This pathway complexity could be controlled by the molecular conformation determined by α-positioned substituents. The developed hypothesis presents an excellent expansibility to other substrates, which may guide us to rationally design and screen 1D materials with different dimensions and sizes including the production of high-quality self-standing hydrogels.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b01161</identifier><identifier>PMID: 28368572</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acids, Aromatic - chemistry ; Ethanol - chemistry ; Hydrogels - chemistry ; Hydrogen - chemistry ; Hydrogen Bonding ; Molecular Structure ; Nanofibers - chemistry ; Particle Size ; Surface Properties ; Water - chemistry</subject><ispartof>ACS nano, 2017-04, Vol.11 (4), p.4206-4216</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-8742afcc89f4ae2677d733ac7dcad814ec1e31ed1ce8184174ba11ad9377c14a3</citedby><cites>FETCH-LOGICAL-a333t-8742afcc89f4ae2677d733ac7dcad814ec1e31ed1ce8184174ba11ad9377c14a3</cites><orcidid>0000-0002-9231-8360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b01161$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b01161$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28368572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Pengyao</creatorcontrib><creatorcontrib>Li, Peizhou</creatorcontrib><creatorcontrib>Chen, Hongzhong</creatorcontrib><creatorcontrib>Hao, Aiyou</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><title>Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Rational engineering of one-dimensional (1D) self-assembled aggregates to produce desired materials for versatile functions remains a challenge. In this work, we report the noncovalent modulation of 1D aggregates at the micro/nanoscale using a coassembly protocol. Aromatic amino acids were employed as the model building blocks, and melamine (Mm) behaves as a modulator to form coassembly arrays with aromatic amino acids selectively. The selective self-assembly behavior between aromatic amino acids and Mm allows distinguishing and detecting Mm and aromatic amino acids from their analogues in macroscopic and microscopic scales. Dimensions and sizes of fibrous aggregates prepared from different amino acids show two opposite pathways from pristine assemblies to coassemblies induced by the addition of Mm. This pathway complexity could be controlled by the molecular conformation determined by α-positioned substituents. The developed hypothesis presents an excellent expansibility to other substrates, which may guide us to rationally design and screen 1D materials with different dimensions and sizes including the production of high-quality self-standing hydrogels.</description><subject>Amino Acids, Aromatic - chemistry</subject><subject>Ethanol - chemistry</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Molecular Structure</subject><subject>Nanofibers - chemistry</subject><subject>Particle Size</subject><subject>Surface Properties</subject><subject>Water - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EolCY2ZBHJBSai9PYHUvFlwSUASS26GI7ravELnYq6L_H0NKN6W543ud0LyFnkF5BmsEAZbBo3RWvUoAC9sgRjFiRpKJ439_tQ-iR4xAWaTrkgheHpJcJVoghz47I15tV2ocOrTJ2Rl-wm3_imk5cu2z0l-nW1NV06mdojaRPRno3eI4Ha1NpT--8--zm1Fh6v1bezbRNrl30qZjHEHRbNb_5sXctdlEwbo11dCyNCifkoMYm6NPt7JO325vXyX3yOL17mIwfE2SMdYngeYa1lGJU56izgnPFGUPJlUQlINcSNAOtQGoBIgeeVwiAasQ4l5Aj65OLjXfp3cdKh65sTZC6adBqtwoliJgqeJ6KiA42aPwyBK_rculNi35dQlr-1F1u6y63dcfE-Va-qlqtdvxfvxG43AAxWS7cytv467-6by4LjUY</recordid><startdate>20170425</startdate><enddate>20170425</enddate><creator>Xing, Pengyao</creator><creator>Li, Peizhou</creator><creator>Chen, Hongzhong</creator><creator>Hao, Aiyou</creator><creator>Zhao, Yanli</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9231-8360</orcidid></search><sort><creationdate>20170425</creationdate><title>Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids</title><author>Xing, Pengyao ; Li, Peizhou ; Chen, Hongzhong ; Hao, Aiyou ; Zhao, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-8742afcc89f4ae2677d733ac7dcad814ec1e31ed1ce8184174ba11ad9377c14a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acids, Aromatic - chemistry</topic><topic>Ethanol - chemistry</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Molecular Structure</topic><topic>Nanofibers - chemistry</topic><topic>Particle Size</topic><topic>Surface Properties</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Pengyao</creatorcontrib><creatorcontrib>Li, Peizhou</creatorcontrib><creatorcontrib>Chen, Hongzhong</creatorcontrib><creatorcontrib>Hao, Aiyou</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Pengyao</au><au>Li, Peizhou</au><au>Chen, Hongzhong</au><au>Hao, Aiyou</au><au>Zhao, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-04-25</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>4206</spage><epage>4216</epage><pages>4206-4216</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Rational engineering of one-dimensional (1D) self-assembled aggregates to produce desired materials for versatile functions remains a challenge. In this work, we report the noncovalent modulation of 1D aggregates at the micro/nanoscale using a coassembly protocol. Aromatic amino acids were employed as the model building blocks, and melamine (Mm) behaves as a modulator to form coassembly arrays with aromatic amino acids selectively. The selective self-assembly behavior between aromatic amino acids and Mm allows distinguishing and detecting Mm and aromatic amino acids from their analogues in macroscopic and microscopic scales. Dimensions and sizes of fibrous aggregates prepared from different amino acids show two opposite pathways from pristine assemblies to coassemblies induced by the addition of Mm. This pathway complexity could be controlled by the molecular conformation determined by α-positioned substituents. The developed hypothesis presents an excellent expansibility to other substrates, which may guide us to rationally design and screen 1D materials with different dimensions and sizes including the production of high-quality self-standing hydrogels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28368572</pmid><doi>10.1021/acsnano.7b01161</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9231-8360</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2017-04, Vol.11 (4), p.4206-4216
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1884167408
source MEDLINE; American Chemical Society Journals
subjects Amino Acids, Aromatic - chemistry
Ethanol - chemistry
Hydrogels - chemistry
Hydrogen - chemistry
Hydrogen Bonding
Molecular Structure
Nanofibers - chemistry
Particle Size
Surface Properties
Water - chemistry
title Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Pathway%20Complexity%20of%20Organic%20Micro/Nanofiber%20Growth%20in%20Hydrogen-Bonded%20Coassembly%20of%20Aromatic%20Amino%20Acids&rft.jtitle=ACS%20nano&rft.au=Xing,%20Pengyao&rft.date=2017-04-25&rft.volume=11&rft.issue=4&rft.spage=4206&rft.epage=4216&rft.pages=4206-4216&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b01161&rft_dat=%3Cproquest_cross%3E1884167408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884167408&rft_id=info:pmid/28368572&rfr_iscdi=true