Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids
Rational engineering of one-dimensional (1D) self-assembled aggregates to produce desired materials for versatile functions remains a challenge. In this work, we report the noncovalent modulation of 1D aggregates at the micro/nanoscale using a coassembly protocol. Aromatic amino acids were employed...
Gespeichert in:
Veröffentlicht in: | ACS nano 2017-04, Vol.11 (4), p.4206-4216 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4216 |
---|---|
container_issue | 4 |
container_start_page | 4206 |
container_title | ACS nano |
container_volume | 11 |
creator | Xing, Pengyao Li, Peizhou Chen, Hongzhong Hao, Aiyou Zhao, Yanli |
description | Rational engineering of one-dimensional (1D) self-assembled aggregates to produce desired materials for versatile functions remains a challenge. In this work, we report the noncovalent modulation of 1D aggregates at the micro/nanoscale using a coassembly protocol. Aromatic amino acids were employed as the model building blocks, and melamine (Mm) behaves as a modulator to form coassembly arrays with aromatic amino acids selectively. The selective self-assembly behavior between aromatic amino acids and Mm allows distinguishing and detecting Mm and aromatic amino acids from their analogues in macroscopic and microscopic scales. Dimensions and sizes of fibrous aggregates prepared from different amino acids show two opposite pathways from pristine assemblies to coassemblies induced by the addition of Mm. This pathway complexity could be controlled by the molecular conformation determined by α-positioned substituents. The developed hypothesis presents an excellent expansibility to other substrates, which may guide us to rationally design and screen 1D materials with different dimensions and sizes including the production of high-quality self-standing hydrogels. |
doi_str_mv | 10.1021/acsnano.7b01161 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884167408</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884167408</sourcerecordid><originalsourceid>FETCH-LOGICAL-a333t-8742afcc89f4ae2677d733ac7dcad814ec1e31ed1ce8184174ba11ad9377c14a3</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EolCY2ZBHJBSai9PYHUvFlwSUASS26GI7ravELnYq6L_H0NKN6W543ud0LyFnkF5BmsEAZbBo3RWvUoAC9sgRjFiRpKJ439_tQ-iR4xAWaTrkgheHpJcJVoghz47I15tV2ocOrTJ2Rl-wm3_imk5cu2z0l-nW1NV06mdojaRPRno3eI4Ha1NpT--8--zm1Fh6v1bezbRNrl30qZjHEHRbNb_5sXctdlEwbo11dCyNCifkoMYm6NPt7JO325vXyX3yOL17mIwfE2SMdYngeYa1lGJU56izgnPFGUPJlUQlINcSNAOtQGoBIgeeVwiAasQ4l5Aj65OLjXfp3cdKh65sTZC6adBqtwoliJgqeJ6KiA42aPwyBK_rculNi35dQlr-1F1u6y63dcfE-Va-qlqtdvxfvxG43AAxWS7cytv467-6by4LjUY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884167408</pqid></control><display><type>article</type><title>Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Xing, Pengyao ; Li, Peizhou ; Chen, Hongzhong ; Hao, Aiyou ; Zhao, Yanli</creator><creatorcontrib>Xing, Pengyao ; Li, Peizhou ; Chen, Hongzhong ; Hao, Aiyou ; Zhao, Yanli</creatorcontrib><description>Rational engineering of one-dimensional (1D) self-assembled aggregates to produce desired materials for versatile functions remains a challenge. In this work, we report the noncovalent modulation of 1D aggregates at the micro/nanoscale using a coassembly protocol. Aromatic amino acids were employed as the model building blocks, and melamine (Mm) behaves as a modulator to form coassembly arrays with aromatic amino acids selectively. The selective self-assembly behavior between aromatic amino acids and Mm allows distinguishing and detecting Mm and aromatic amino acids from their analogues in macroscopic and microscopic scales. Dimensions and sizes of fibrous aggregates prepared from different amino acids show two opposite pathways from pristine assemblies to coassemblies induced by the addition of Mm. This pathway complexity could be controlled by the molecular conformation determined by α-positioned substituents. The developed hypothesis presents an excellent expansibility to other substrates, which may guide us to rationally design and screen 1D materials with different dimensions and sizes including the production of high-quality self-standing hydrogels.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b01161</identifier><identifier>PMID: 28368572</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Amino Acids, Aromatic - chemistry ; Ethanol - chemistry ; Hydrogels - chemistry ; Hydrogen - chemistry ; Hydrogen Bonding ; Molecular Structure ; Nanofibers - chemistry ; Particle Size ; Surface Properties ; Water - chemistry</subject><ispartof>ACS nano, 2017-04, Vol.11 (4), p.4206-4216</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a333t-8742afcc89f4ae2677d733ac7dcad814ec1e31ed1ce8184174ba11ad9377c14a3</citedby><cites>FETCH-LOGICAL-a333t-8742afcc89f4ae2677d733ac7dcad814ec1e31ed1ce8184174ba11ad9377c14a3</cites><orcidid>0000-0002-9231-8360</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b01161$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b01161$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,780,784,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28368572$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xing, Pengyao</creatorcontrib><creatorcontrib>Li, Peizhou</creatorcontrib><creatorcontrib>Chen, Hongzhong</creatorcontrib><creatorcontrib>Hao, Aiyou</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><title>Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Rational engineering of one-dimensional (1D) self-assembled aggregates to produce desired materials for versatile functions remains a challenge. In this work, we report the noncovalent modulation of 1D aggregates at the micro/nanoscale using a coassembly protocol. Aromatic amino acids were employed as the model building blocks, and melamine (Mm) behaves as a modulator to form coassembly arrays with aromatic amino acids selectively. The selective self-assembly behavior between aromatic amino acids and Mm allows distinguishing and detecting Mm and aromatic amino acids from their analogues in macroscopic and microscopic scales. Dimensions and sizes of fibrous aggregates prepared from different amino acids show two opposite pathways from pristine assemblies to coassemblies induced by the addition of Mm. This pathway complexity could be controlled by the molecular conformation determined by α-positioned substituents. The developed hypothesis presents an excellent expansibility to other substrates, which may guide us to rationally design and screen 1D materials with different dimensions and sizes including the production of high-quality self-standing hydrogels.</description><subject>Amino Acids, Aromatic - chemistry</subject><subject>Ethanol - chemistry</subject><subject>Hydrogels - chemistry</subject><subject>Hydrogen - chemistry</subject><subject>Hydrogen Bonding</subject><subject>Molecular Structure</subject><subject>Nanofibers - chemistry</subject><subject>Particle Size</subject><subject>Surface Properties</subject><subject>Water - chemistry</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD1PwzAQhi0EolCY2ZBHJBSai9PYHUvFlwSUASS26GI7ravELnYq6L_H0NKN6W543ud0LyFnkF5BmsEAZbBo3RWvUoAC9sgRjFiRpKJ439_tQ-iR4xAWaTrkgheHpJcJVoghz47I15tV2ocOrTJ2Rl-wm3_imk5cu2z0l-nW1NV06mdojaRPRno3eI4Ha1NpT--8--zm1Fh6v1bezbRNrl30qZjHEHRbNb_5sXctdlEwbo11dCyNCifkoMYm6NPt7JO325vXyX3yOL17mIwfE2SMdYngeYa1lGJU56izgnPFGUPJlUQlINcSNAOtQGoBIgeeVwiAasQ4l5Aj65OLjXfp3cdKh65sTZC6adBqtwoliJgqeJ6KiA42aPwyBK_rculNi35dQlr-1F1u6y63dcfE-Va-qlqtdvxfvxG43AAxWS7cytv467-6by4LjUY</recordid><startdate>20170425</startdate><enddate>20170425</enddate><creator>Xing, Pengyao</creator><creator>Li, Peizhou</creator><creator>Chen, Hongzhong</creator><creator>Hao, Aiyou</creator><creator>Zhao, Yanli</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9231-8360</orcidid></search><sort><creationdate>20170425</creationdate><title>Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids</title><author>Xing, Pengyao ; Li, Peizhou ; Chen, Hongzhong ; Hao, Aiyou ; Zhao, Yanli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a333t-8742afcc89f4ae2677d733ac7dcad814ec1e31ed1ce8184174ba11ad9377c14a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Amino Acids, Aromatic - chemistry</topic><topic>Ethanol - chemistry</topic><topic>Hydrogels - chemistry</topic><topic>Hydrogen - chemistry</topic><topic>Hydrogen Bonding</topic><topic>Molecular Structure</topic><topic>Nanofibers - chemistry</topic><topic>Particle Size</topic><topic>Surface Properties</topic><topic>Water - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xing, Pengyao</creatorcontrib><creatorcontrib>Li, Peizhou</creatorcontrib><creatorcontrib>Chen, Hongzhong</creatorcontrib><creatorcontrib>Hao, Aiyou</creatorcontrib><creatorcontrib>Zhao, Yanli</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xing, Pengyao</au><au>Li, Peizhou</au><au>Chen, Hongzhong</au><au>Hao, Aiyou</au><au>Zhao, Yanli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2017-04-25</date><risdate>2017</risdate><volume>11</volume><issue>4</issue><spage>4206</spage><epage>4216</epage><pages>4206-4216</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>Rational engineering of one-dimensional (1D) self-assembled aggregates to produce desired materials for versatile functions remains a challenge. In this work, we report the noncovalent modulation of 1D aggregates at the micro/nanoscale using a coassembly protocol. Aromatic amino acids were employed as the model building blocks, and melamine (Mm) behaves as a modulator to form coassembly arrays with aromatic amino acids selectively. The selective self-assembly behavior between aromatic amino acids and Mm allows distinguishing and detecting Mm and aromatic amino acids from their analogues in macroscopic and microscopic scales. Dimensions and sizes of fibrous aggregates prepared from different amino acids show two opposite pathways from pristine assemblies to coassemblies induced by the addition of Mm. This pathway complexity could be controlled by the molecular conformation determined by α-positioned substituents. The developed hypothesis presents an excellent expansibility to other substrates, which may guide us to rationally design and screen 1D materials with different dimensions and sizes including the production of high-quality self-standing hydrogels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28368572</pmid><doi>10.1021/acsnano.7b01161</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9231-8360</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2017-04, Vol.11 (4), p.4206-4216 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1884167408 |
source | MEDLINE; American Chemical Society Journals |
subjects | Amino Acids, Aromatic - chemistry Ethanol - chemistry Hydrogels - chemistry Hydrogen - chemistry Hydrogen Bonding Molecular Structure Nanofibers - chemistry Particle Size Surface Properties Water - chemistry |
title | Understanding Pathway Complexity of Organic Micro/Nanofiber Growth in Hydrogen-Bonded Coassembly of Aromatic Amino Acids |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T14%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20Pathway%20Complexity%20of%20Organic%20Micro/Nanofiber%20Growth%20in%20Hydrogen-Bonded%20Coassembly%20of%20Aromatic%20Amino%20Acids&rft.jtitle=ACS%20nano&rft.au=Xing,%20Pengyao&rft.date=2017-04-25&rft.volume=11&rft.issue=4&rft.spage=4206&rft.epage=4216&rft.pages=4206-4216&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b01161&rft_dat=%3Cproquest_cross%3E1884167408%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884167408&rft_id=info:pmid/28368572&rfr_iscdi=true |