Patterns of glaucoma progression in retinal nerve fiber and macular ganglion cell-inner plexiform layer in spectral-domain optical coherence tomography

Purpose To evaluate the progressive changes of circumpapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses measured by spectral-domain optical coherence tomography (Cirrus SD-OCT) in open-angle glaucoma. Methods One hundred-fourteen eyes of op...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese journal of ophthalmology 2017-07, Vol.61 (4), p.324-333
Hauptverfasser: Kim, Hae Jin, Jeoung, Jin Wook, Yoo, Byeong Wook, Kim, Hee Chan, Park, Ki Ho
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 333
container_issue 4
container_start_page 324
container_title Japanese journal of ophthalmology
container_volume 61
creator Kim, Hae Jin
Jeoung, Jin Wook
Yoo, Byeong Wook
Kim, Hee Chan
Park, Ki Ho
description Purpose To evaluate the progressive changes of circumpapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses measured by spectral-domain optical coherence tomography (Cirrus SD-OCT) in open-angle glaucoma. Methods One hundred-fourteen eyes of open-angle glaucoma patients with localized RNFL defect who had 3 years’ worth of annual RNFL photography and OCT measurements were enrolled in this retrospective study. The progression rates of serial RNFL and GCIPL thicknesses (µm), angular width (°) and area (mm 2 ) of defect on RNFL and GCIPL deviation maps were determined by linear mixed-effect models. Results Over a mean follow-up period of 3.16 years, 50 patients out of a total of 114 patients were classified as progressors based on the structural evaluation. The progressors showed significantly higher progression rates in average, 6 and 11 o’clock sector RNFL thicknesses, angular width and area of defect in RNFL deviation map, as well as inferotemporal and minimum GCIPL thicknesses than the non-progressors. The thicknesses of the 6 o’clock sector RNFL and minimum GCIPL exhibited the highest reduction rates among the RNFL and GCIPL parameters assessed, respectively. Conclusions When evaluating glaucoma progression by OCT, careful observation of the average, 6 and 11 o’clock sectors in RNFL and inferotemporal and minimum GCIPL thicknesses can be helpful. We can effectively assess early changes of glaucoma progression with GCIPL thickness as well as RNFL thickness.
doi_str_mv 10.1007/s10384-017-0511-3
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884166836</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1914771329</sourcerecordid><originalsourceid>FETCH-LOGICAL-c396t-25ecfd4ed580c67de918598f15cdc4329cb3bd105002d3fb0d5968c042b9db7f3</originalsourceid><addsrcrecordid>eNp1kc2KFTEQhYMoznX0AdxIwI2baCrp9M9ShvEHBnSh6yadVPf0kE7apFu8T-LrWpc7igiuQpGvzqHOYew5yNcgZfOmgNRtJSQ0QhoAoR-wA9SghVJV_ZAdpFQgDBhzwZ6UcielrJRWj9mFanVTqUYe2M_Pdtswx8LTyKdgd5cWy9ecpoylzCnyOfKM2xxt4BHzd-TjPGDmNnq-WLcHm_lk4xROrMMQxByJ42vAH_OY8sKDPdJMMmVFt2UbhCcPmtO6zY5kXbrFjNEh39JCxna9PT5lj0YbCj67fy_Z13fXX64-iJtP7z9evb0RTnf1JpRBN_oKvWmlqxuPHbSma0cwzrtKq84NevAgDUXh9ThIb7q6dZTD0PmhGfUle3XWpZO_7Vi2fpnL6QwbMe2lh7atoK5bXRP68h_0Lu2ZciGqg6ppgPyIgjPlciol49iveV5sPvYg-1Nr_bm1nlrrT631mnZe3Cvvw4L-z8bvmghQZ6DQV5ww_2X9X9VfxcylcA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1914771329</pqid></control><display><type>article</type><title>Patterns of glaucoma progression in retinal nerve fiber and macular ganglion cell-inner plexiform layer in spectral-domain optical coherence tomography</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Kim, Hae Jin ; Jeoung, Jin Wook ; Yoo, Byeong Wook ; Kim, Hee Chan ; Park, Ki Ho</creator><creatorcontrib>Kim, Hae Jin ; Jeoung, Jin Wook ; Yoo, Byeong Wook ; Kim, Hee Chan ; Park, Ki Ho</creatorcontrib><description>Purpose To evaluate the progressive changes of circumpapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses measured by spectral-domain optical coherence tomography (Cirrus SD-OCT) in open-angle glaucoma. Methods One hundred-fourteen eyes of open-angle glaucoma patients with localized RNFL defect who had 3 years’ worth of annual RNFL photography and OCT measurements were enrolled in this retrospective study. The progression rates of serial RNFL and GCIPL thicknesses (µm), angular width (°) and area (mm 2 ) of defect on RNFL and GCIPL deviation maps were determined by linear mixed-effect models. Results Over a mean follow-up period of 3.16 years, 50 patients out of a total of 114 patients were classified as progressors based on the structural evaluation. The progressors showed significantly higher progression rates in average, 6 and 11 o’clock sector RNFL thicknesses, angular width and area of defect in RNFL deviation map, as well as inferotemporal and minimum GCIPL thicknesses than the non-progressors. The thicknesses of the 6 o’clock sector RNFL and minimum GCIPL exhibited the highest reduction rates among the RNFL and GCIPL parameters assessed, respectively. Conclusions When evaluating glaucoma progression by OCT, careful observation of the average, 6 and 11 o’clock sectors in RNFL and inferotemporal and minimum GCIPL thicknesses can be helpful. We can effectively assess early changes of glaucoma progression with GCIPL thickness as well as RNFL thickness.</description><identifier>ISSN: 0021-5155</identifier><identifier>EISSN: 1613-2246</identifier><identifier>DOI: 10.1007/s10384-017-0511-3</identifier><identifier>PMID: 28374270</identifier><language>eng</language><publisher>Tokyo: Springer Japan</publisher><subject>Adult ; Aged ; Aged, 80 and over ; Clinical Investigation ; Coherence ; Defects ; Deviation ; Disease Progression ; Eye (anatomy) ; Female ; Follow-Up Studies ; Glaucoma ; Glaucoma, Open-Angle - diagnosis ; Glaucoma, Open-Angle - physiopathology ; Humans ; Intraocular Pressure ; Macula Lutea - pathology ; Male ; Medicine ; Medicine &amp; Public Health ; Middle Aged ; Nerve Fibers - pathology ; Ophthalmology ; Optic Disk - pathology ; Optical Coherence Tomography ; Patients ; Photography ; Prognosis ; Retina ; Retinal Ganglion Cells - pathology ; Retrospective Studies ; Time Factors ; Tomography ; Tomography, Optical Coherence - methods ; Visual Fields - physiology ; Young Adult</subject><ispartof>Japanese journal of ophthalmology, 2017-07, Vol.61 (4), p.324-333</ispartof><rights>Japanese Ophthalmological Society 2017</rights><rights>Japanese Journal of Ophthalmology is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c396t-25ecfd4ed580c67de918598f15cdc4329cb3bd105002d3fb0d5968c042b9db7f3</citedby><cites>FETCH-LOGICAL-c396t-25ecfd4ed580c67de918598f15cdc4329cb3bd105002d3fb0d5968c042b9db7f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10384-017-0511-3$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10384-017-0511-3$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28374270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kim, Hae Jin</creatorcontrib><creatorcontrib>Jeoung, Jin Wook</creatorcontrib><creatorcontrib>Yoo, Byeong Wook</creatorcontrib><creatorcontrib>Kim, Hee Chan</creatorcontrib><creatorcontrib>Park, Ki Ho</creatorcontrib><title>Patterns of glaucoma progression in retinal nerve fiber and macular ganglion cell-inner plexiform layer in spectral-domain optical coherence tomography</title><title>Japanese journal of ophthalmology</title><addtitle>Jpn J Ophthalmol</addtitle><addtitle>Jpn J Ophthalmol</addtitle><description>Purpose To evaluate the progressive changes of circumpapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses measured by spectral-domain optical coherence tomography (Cirrus SD-OCT) in open-angle glaucoma. Methods One hundred-fourteen eyes of open-angle glaucoma patients with localized RNFL defect who had 3 years’ worth of annual RNFL photography and OCT measurements were enrolled in this retrospective study. The progression rates of serial RNFL and GCIPL thicknesses (µm), angular width (°) and area (mm 2 ) of defect on RNFL and GCIPL deviation maps were determined by linear mixed-effect models. Results Over a mean follow-up period of 3.16 years, 50 patients out of a total of 114 patients were classified as progressors based on the structural evaluation. The progressors showed significantly higher progression rates in average, 6 and 11 o’clock sector RNFL thicknesses, angular width and area of defect in RNFL deviation map, as well as inferotemporal and minimum GCIPL thicknesses than the non-progressors. The thicknesses of the 6 o’clock sector RNFL and minimum GCIPL exhibited the highest reduction rates among the RNFL and GCIPL parameters assessed, respectively. Conclusions When evaluating glaucoma progression by OCT, careful observation of the average, 6 and 11 o’clock sectors in RNFL and inferotemporal and minimum GCIPL thicknesses can be helpful. We can effectively assess early changes of glaucoma progression with GCIPL thickness as well as RNFL thickness.</description><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Clinical Investigation</subject><subject>Coherence</subject><subject>Defects</subject><subject>Deviation</subject><subject>Disease Progression</subject><subject>Eye (anatomy)</subject><subject>Female</subject><subject>Follow-Up Studies</subject><subject>Glaucoma</subject><subject>Glaucoma, Open-Angle - diagnosis</subject><subject>Glaucoma, Open-Angle - physiopathology</subject><subject>Humans</subject><subject>Intraocular Pressure</subject><subject>Macula Lutea - pathology</subject><subject>Male</subject><subject>Medicine</subject><subject>Medicine &amp; Public Health</subject><subject>Middle Aged</subject><subject>Nerve Fibers - pathology</subject><subject>Ophthalmology</subject><subject>Optic Disk - pathology</subject><subject>Optical Coherence Tomography</subject><subject>Patients</subject><subject>Photography</subject><subject>Prognosis</subject><subject>Retina</subject><subject>Retinal Ganglion Cells - pathology</subject><subject>Retrospective Studies</subject><subject>Time Factors</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence - methods</subject><subject>Visual Fields - physiology</subject><subject>Young Adult</subject><issn>0021-5155</issn><issn>1613-2246</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><recordid>eNp1kc2KFTEQhYMoznX0AdxIwI2baCrp9M9ShvEHBnSh6yadVPf0kE7apFu8T-LrWpc7igiuQpGvzqHOYew5yNcgZfOmgNRtJSQ0QhoAoR-wA9SghVJV_ZAdpFQgDBhzwZ6UcielrJRWj9mFanVTqUYe2M_Pdtswx8LTyKdgd5cWy9ecpoylzCnyOfKM2xxt4BHzd-TjPGDmNnq-WLcHm_lk4xROrMMQxByJ42vAH_OY8sKDPdJMMmVFt2UbhCcPmtO6zY5kXbrFjNEh39JCxna9PT5lj0YbCj67fy_Z13fXX64-iJtP7z9evb0RTnf1JpRBN_oKvWmlqxuPHbSma0cwzrtKq84NevAgDUXh9ThIb7q6dZTD0PmhGfUle3XWpZO_7Vi2fpnL6QwbMe2lh7atoK5bXRP68h_0Lu2ZciGqg6ppgPyIgjPlciol49iveV5sPvYg-1Nr_bm1nlrrT631mnZe3Cvvw4L-z8bvmghQZ6DQV5ww_2X9X9VfxcylcA</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Kim, Hae Jin</creator><creator>Jeoung, Jin Wook</creator><creator>Yoo, Byeong Wook</creator><creator>Kim, Hee Chan</creator><creator>Park, Ki Ho</creator><general>Springer Japan</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H94</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope></search><sort><creationdate>20170701</creationdate><title>Patterns of glaucoma progression in retinal nerve fiber and macular ganglion cell-inner plexiform layer in spectral-domain optical coherence tomography</title><author>Kim, Hae Jin ; Jeoung, Jin Wook ; Yoo, Byeong Wook ; Kim, Hee Chan ; Park, Ki Ho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c396t-25ecfd4ed580c67de918598f15cdc4329cb3bd105002d3fb0d5968c042b9db7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Clinical Investigation</topic><topic>Coherence</topic><topic>Defects</topic><topic>Deviation</topic><topic>Disease Progression</topic><topic>Eye (anatomy)</topic><topic>Female</topic><topic>Follow-Up Studies</topic><topic>Glaucoma</topic><topic>Glaucoma, Open-Angle - diagnosis</topic><topic>Glaucoma, Open-Angle - physiopathology</topic><topic>Humans</topic><topic>Intraocular Pressure</topic><topic>Macula Lutea - pathology</topic><topic>Male</topic><topic>Medicine</topic><topic>Medicine &amp; Public Health</topic><topic>Middle Aged</topic><topic>Nerve Fibers - pathology</topic><topic>Ophthalmology</topic><topic>Optic Disk - pathology</topic><topic>Optical Coherence Tomography</topic><topic>Patients</topic><topic>Photography</topic><topic>Prognosis</topic><topic>Retina</topic><topic>Retinal Ganglion Cells - pathology</topic><topic>Retrospective Studies</topic><topic>Time Factors</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence - methods</topic><topic>Visual Fields - physiology</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Hae Jin</creatorcontrib><creatorcontrib>Jeoung, Jin Wook</creatorcontrib><creatorcontrib>Yoo, Byeong Wook</creatorcontrib><creatorcontrib>Kim, Hee Chan</creatorcontrib><creatorcontrib>Park, Ki Ho</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><jtitle>Japanese journal of ophthalmology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kim, Hae Jin</au><au>Jeoung, Jin Wook</au><au>Yoo, Byeong Wook</au><au>Kim, Hee Chan</au><au>Park, Ki Ho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Patterns of glaucoma progression in retinal nerve fiber and macular ganglion cell-inner plexiform layer in spectral-domain optical coherence tomography</atitle><jtitle>Japanese journal of ophthalmology</jtitle><stitle>Jpn J Ophthalmol</stitle><addtitle>Jpn J Ophthalmol</addtitle><date>2017-07-01</date><risdate>2017</risdate><volume>61</volume><issue>4</issue><spage>324</spage><epage>333</epage><pages>324-333</pages><issn>0021-5155</issn><eissn>1613-2246</eissn><abstract>Purpose To evaluate the progressive changes of circumpapillary retinal nerve fiber layer (RNFL) and macular ganglion cell-inner plexiform layer (GCIPL) thicknesses measured by spectral-domain optical coherence tomography (Cirrus SD-OCT) in open-angle glaucoma. Methods One hundred-fourteen eyes of open-angle glaucoma patients with localized RNFL defect who had 3 years’ worth of annual RNFL photography and OCT measurements were enrolled in this retrospective study. The progression rates of serial RNFL and GCIPL thicknesses (µm), angular width (°) and area (mm 2 ) of defect on RNFL and GCIPL deviation maps were determined by linear mixed-effect models. Results Over a mean follow-up period of 3.16 years, 50 patients out of a total of 114 patients were classified as progressors based on the structural evaluation. The progressors showed significantly higher progression rates in average, 6 and 11 o’clock sector RNFL thicknesses, angular width and area of defect in RNFL deviation map, as well as inferotemporal and minimum GCIPL thicknesses than the non-progressors. The thicknesses of the 6 o’clock sector RNFL and minimum GCIPL exhibited the highest reduction rates among the RNFL and GCIPL parameters assessed, respectively. Conclusions When evaluating glaucoma progression by OCT, careful observation of the average, 6 and 11 o’clock sectors in RNFL and inferotemporal and minimum GCIPL thicknesses can be helpful. We can effectively assess early changes of glaucoma progression with GCIPL thickness as well as RNFL thickness.</abstract><cop>Tokyo</cop><pub>Springer Japan</pub><pmid>28374270</pmid><doi>10.1007/s10384-017-0511-3</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0021-5155
ispartof Japanese journal of ophthalmology, 2017-07, Vol.61 (4), p.324-333
issn 0021-5155
1613-2246
language eng
recordid cdi_proquest_miscellaneous_1884166836
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Adult
Aged
Aged, 80 and over
Clinical Investigation
Coherence
Defects
Deviation
Disease Progression
Eye (anatomy)
Female
Follow-Up Studies
Glaucoma
Glaucoma, Open-Angle - diagnosis
Glaucoma, Open-Angle - physiopathology
Humans
Intraocular Pressure
Macula Lutea - pathology
Male
Medicine
Medicine & Public Health
Middle Aged
Nerve Fibers - pathology
Ophthalmology
Optic Disk - pathology
Optical Coherence Tomography
Patients
Photography
Prognosis
Retina
Retinal Ganglion Cells - pathology
Retrospective Studies
Time Factors
Tomography
Tomography, Optical Coherence - methods
Visual Fields - physiology
Young Adult
title Patterns of glaucoma progression in retinal nerve fiber and macular ganglion cell-inner plexiform layer in spectral-domain optical coherence tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T00%3A15%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Patterns%20of%20glaucoma%20progression%20in%20retinal%20nerve%20fiber%20and%20macular%20ganglion%20cell-inner%20plexiform%20layer%20in%20spectral-domain%20optical%20coherence%20tomography&rft.jtitle=Japanese%20journal%20of%20ophthalmology&rft.au=Kim,%20Hae%20Jin&rft.date=2017-07-01&rft.volume=61&rft.issue=4&rft.spage=324&rft.epage=333&rft.pages=324-333&rft.issn=0021-5155&rft.eissn=1613-2246&rft_id=info:doi/10.1007/s10384-017-0511-3&rft_dat=%3Cproquest_cross%3E1914771329%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1914771329&rft_id=info:pmid/28374270&rfr_iscdi=true