Integrating count and detection—nondetection data to model population dynamics

There is increasing need for methods that integrate multiple data types into a single analytical framework as the spatial and temporal scale of ecological research expands. Current work on this topic primarily focuses on combining capture–recapture data from marked individuals with other data types...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecology (Durham) 2017-06, Vol.98 (6), p.1640-1650
Hauptverfasser: Zipkin, Elise F., Rossman, Sam, Yackulic, Charles B., Wiens, J. David, Thorson, James T., Davis, Raymond J., Gran, Evan H. Campbell
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1650
container_issue 6
container_start_page 1640
container_title Ecology (Durham)
container_volume 98
creator Zipkin, Elise F.
Rossman, Sam
Yackulic, Charles B.
Wiens, J. David
Thorson, James T.
Davis, Raymond J.
Gran, Evan H. Campbell
description There is increasing need for methods that integrate multiple data types into a single analytical framework as the spatial and temporal scale of ecological research expands. Current work on this topic primarily focuses on combining capture–recapture data from marked individuals with other data types into integrated population models. Yet, studies of species distributions and trends often rely on data from unmarked individuals across broad scales where local abundance and environmental variables may vary. We present a modeling framework for integrating detection–nondetection and count data into a single analysis to estimate population dynamics, abundance, and individual detection probabilities during sampling. Our dynamic population model assumes that site-specific abundance can change over time according to survival of individuals and gains through reproduction and immigration. The observation process for each data type is modeled by assuming that every individual present at a site has an equal probability of being detected during sampling processes. We examine our modeling approach through a series of simulations illustrating the relative value of count vs. detection-nondetection data under a variety of parameter values and survey configurations. We also provide an empirical example of the model by combining long-term detection-nondetection data (1995–2014) with newly collected count data (2015–2016) from a growing population of Barred Owl (Strix varia) in the Pacific Northwest to examine the factors influencing population abundance over time. Our model provides a foundation for incorporating unmarked data within a single framework, even in cases where sampling processes yield different detection probabilities. This approach will be useful for survey design and to researchers interested in incorporating historical or citizen science data into analyses focused on understanding how demographic rates drive population abundance.
doi_str_mv 10.1002/ecy.1831
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884166187</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26164813</jstor_id><sourcerecordid>26164813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4371-8f075b95b4aac96a37184ad2f5724da05e0bc70ce731bd16e45179299287081f3</originalsourceid><addsrcrecordid>eNp1kM1KxDAQx4Mo7roKvoBS8OKla6ZJ83GUZf0AQQ968BTSNJUubbI2KbI3H8In9Ems7LqC4FyGmfnxY_gjdAx4ChhnF9aspiAI7KAxSCJTCRzvojHGkKWS5WKEDkJY4KGAin00ygRhkvN8jB5uXbQvnY61e0mM711MtCuT0kZrYu3d5_uH8247JqWOOok-aX1pm2Tpl32j14eV021twiHaq3QT7NGmT9DT1fxxdpPe3V_fzi7vUkMJh1RUmOeFzAuqtZFMDztBdZlVOc9oqXFucWE4NpYTKEpglubAZSZlJjgWUJEJOl97l51_7W2Iqq2DsU2jnfV9UCAEBcZA8AE9-4MufN-54TsFEhMqGZbyV2g6H0JnK7Xs6lZ3KwVYfaeshpTVd8oDeroR9kVryy34E-sApGvgrW7s6l-Rms-eN8KTNb8I0Xe_PgaMCiDkCxy0j6k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1903496099</pqid></control><display><type>article</type><title>Integrating count and detection—nondetection data to model population dynamics</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zipkin, Elise F. ; Rossman, Sam ; Yackulic, Charles B. ; Wiens, J. David ; Thorson, James T. ; Davis, Raymond J. ; Gran, Evan H. Campbell</creator><creatorcontrib>Zipkin, Elise F. ; Rossman, Sam ; Yackulic, Charles B. ; Wiens, J. David ; Thorson, James T. ; Davis, Raymond J. ; Gran, Evan H. Campbell</creatorcontrib><description>There is increasing need for methods that integrate multiple data types into a single analytical framework as the spatial and temporal scale of ecological research expands. Current work on this topic primarily focuses on combining capture–recapture data from marked individuals with other data types into integrated population models. Yet, studies of species distributions and trends often rely on data from unmarked individuals across broad scales where local abundance and environmental variables may vary. We present a modeling framework for integrating detection–nondetection and count data into a single analysis to estimate population dynamics, abundance, and individual detection probabilities during sampling. Our dynamic population model assumes that site-specific abundance can change over time according to survival of individuals and gains through reproduction and immigration. The observation process for each data type is modeled by assuming that every individual present at a site has an equal probability of being detected during sampling processes. We examine our modeling approach through a series of simulations illustrating the relative value of count vs. detection-nondetection data under a variety of parameter values and survey configurations. We also provide an empirical example of the model by combining long-term detection-nondetection data (1995–2014) with newly collected count data (2015–2016) from a growing population of Barred Owl (Strix varia) in the Pacific Northwest to examine the factors influencing population abundance over time. Our model provides a foundation for incorporating unmarked data within a single framework, even in cases where sampling processes yield different detection probabilities. This approach will be useful for survey design and to researchers interested in incorporating historical or citizen science data into analyses focused on understanding how demographic rates drive population abundance.</description><identifier>ISSN: 0012-9658</identifier><identifier>EISSN: 1939-9170</identifier><identifier>DOI: 10.1002/ecy.1831</identifier><identifier>PMID: 28369775</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Animal populations ; Animals ; Capture-recapture studies ; Computer simulation ; Dail‐Madsen model ; Data analysis ; Data models ; Data types ; Demographics ; Demography ; detection probability ; Ecological distribution ; Ecological modeling ; Ecological monitoring ; Ecological research ; Ecology ; Empirical analysis ; integrated population model ; Metapopulation ecology ; Models, Theoretical ; Northwestern United States ; N‐mixture model ; occupancy ; Owls ; Population Dynamics ; Population ecology ; Population estimates ; Sampling ; Simulations ; Strigiformes ; Strix varia ; unmarked data ; Wildlife ecology</subject><ispartof>Ecology (Durham), 2017-06, Vol.98 (6), p.1640-1650</ispartof><rights>2017 The Ecological Society of America</rights><rights>2017 by the Ecological Society of America</rights><rights>2017 by the Ecological Society of America.</rights><rights>2017 Ecological Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4371-8f075b95b4aac96a37184ad2f5724da05e0bc70ce731bd16e45179299287081f3</citedby><cites>FETCH-LOGICAL-c4371-8f075b95b4aac96a37184ad2f5724da05e0bc70ce731bd16e45179299287081f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26164813$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26164813$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,1411,27901,27902,45550,45551,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28369775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zipkin, Elise F.</creatorcontrib><creatorcontrib>Rossman, Sam</creatorcontrib><creatorcontrib>Yackulic, Charles B.</creatorcontrib><creatorcontrib>Wiens, J. David</creatorcontrib><creatorcontrib>Thorson, James T.</creatorcontrib><creatorcontrib>Davis, Raymond J.</creatorcontrib><creatorcontrib>Gran, Evan H. Campbell</creatorcontrib><title>Integrating count and detection—nondetection data to model population dynamics</title><title>Ecology (Durham)</title><addtitle>Ecology</addtitle><description>There is increasing need for methods that integrate multiple data types into a single analytical framework as the spatial and temporal scale of ecological research expands. Current work on this topic primarily focuses on combining capture–recapture data from marked individuals with other data types into integrated population models. Yet, studies of species distributions and trends often rely on data from unmarked individuals across broad scales where local abundance and environmental variables may vary. We present a modeling framework for integrating detection–nondetection and count data into a single analysis to estimate population dynamics, abundance, and individual detection probabilities during sampling. Our dynamic population model assumes that site-specific abundance can change over time according to survival of individuals and gains through reproduction and immigration. The observation process for each data type is modeled by assuming that every individual present at a site has an equal probability of being detected during sampling processes. We examine our modeling approach through a series of simulations illustrating the relative value of count vs. detection-nondetection data under a variety of parameter values and survey configurations. We also provide an empirical example of the model by combining long-term detection-nondetection data (1995–2014) with newly collected count data (2015–2016) from a growing population of Barred Owl (Strix varia) in the Pacific Northwest to examine the factors influencing population abundance over time. Our model provides a foundation for incorporating unmarked data within a single framework, even in cases where sampling processes yield different detection probabilities. This approach will be useful for survey design and to researchers interested in incorporating historical or citizen science data into analyses focused on understanding how demographic rates drive population abundance.</description><subject>Animal populations</subject><subject>Animals</subject><subject>Capture-recapture studies</subject><subject>Computer simulation</subject><subject>Dail‐Madsen model</subject><subject>Data analysis</subject><subject>Data models</subject><subject>Data types</subject><subject>Demographics</subject><subject>Demography</subject><subject>detection probability</subject><subject>Ecological distribution</subject><subject>Ecological modeling</subject><subject>Ecological monitoring</subject><subject>Ecological research</subject><subject>Ecology</subject><subject>Empirical analysis</subject><subject>integrated population model</subject><subject>Metapopulation ecology</subject><subject>Models, Theoretical</subject><subject>Northwestern United States</subject><subject>N‐mixture model</subject><subject>occupancy</subject><subject>Owls</subject><subject>Population Dynamics</subject><subject>Population ecology</subject><subject>Population estimates</subject><subject>Sampling</subject><subject>Simulations</subject><subject>Strigiformes</subject><subject>Strix varia</subject><subject>unmarked data</subject><subject>Wildlife ecology</subject><issn>0012-9658</issn><issn>1939-9170</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1KxDAQx4Mo7roKvoBS8OKla6ZJ83GUZf0AQQ968BTSNJUubbI2KbI3H8In9Ems7LqC4FyGmfnxY_gjdAx4ChhnF9aspiAI7KAxSCJTCRzvojHGkKWS5WKEDkJY4KGAin00ygRhkvN8jB5uXbQvnY61e0mM711MtCuT0kZrYu3d5_uH8247JqWOOok-aX1pm2Tpl32j14eV021twiHaq3QT7NGmT9DT1fxxdpPe3V_fzi7vUkMJh1RUmOeFzAuqtZFMDztBdZlVOc9oqXFucWE4NpYTKEpglubAZSZlJjgWUJEJOl97l51_7W2Iqq2DsU2jnfV9UCAEBcZA8AE9-4MufN-54TsFEhMqGZbyV2g6H0JnK7Xs6lZ3KwVYfaeshpTVd8oDeroR9kVryy34E-sApGvgrW7s6l-Rms-eN8KTNb8I0Xe_PgaMCiDkCxy0j6k</recordid><startdate>201706</startdate><enddate>201706</enddate><creator>Zipkin, Elise F.</creator><creator>Rossman, Sam</creator><creator>Yackulic, Charles B.</creator><creator>Wiens, J. David</creator><creator>Thorson, James T.</creator><creator>Davis, Raymond J.</creator><creator>Gran, Evan H. Campbell</creator><general>Wiley Subscription Services, Inc</general><general>Ecological Society of America</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>201706</creationdate><title>Integrating count and detection—nondetection data to model population dynamics</title><author>Zipkin, Elise F. ; Rossman, Sam ; Yackulic, Charles B. ; Wiens, J. David ; Thorson, James T. ; Davis, Raymond J. ; Gran, Evan H. Campbell</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4371-8f075b95b4aac96a37184ad2f5724da05e0bc70ce731bd16e45179299287081f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Animal populations</topic><topic>Animals</topic><topic>Capture-recapture studies</topic><topic>Computer simulation</topic><topic>Dail‐Madsen model</topic><topic>Data analysis</topic><topic>Data models</topic><topic>Data types</topic><topic>Demographics</topic><topic>Demography</topic><topic>detection probability</topic><topic>Ecological distribution</topic><topic>Ecological modeling</topic><topic>Ecological monitoring</topic><topic>Ecological research</topic><topic>Ecology</topic><topic>Empirical analysis</topic><topic>integrated population model</topic><topic>Metapopulation ecology</topic><topic>Models, Theoretical</topic><topic>Northwestern United States</topic><topic>N‐mixture model</topic><topic>occupancy</topic><topic>Owls</topic><topic>Population Dynamics</topic><topic>Population ecology</topic><topic>Population estimates</topic><topic>Sampling</topic><topic>Simulations</topic><topic>Strigiformes</topic><topic>Strix varia</topic><topic>unmarked data</topic><topic>Wildlife ecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zipkin, Elise F.</creatorcontrib><creatorcontrib>Rossman, Sam</creatorcontrib><creatorcontrib>Yackulic, Charles B.</creatorcontrib><creatorcontrib>Wiens, J. David</creatorcontrib><creatorcontrib>Thorson, James T.</creatorcontrib><creatorcontrib>Davis, Raymond J.</creatorcontrib><creatorcontrib>Gran, Evan H. Campbell</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Ecology (Durham)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zipkin, Elise F.</au><au>Rossman, Sam</au><au>Yackulic, Charles B.</au><au>Wiens, J. David</au><au>Thorson, James T.</au><au>Davis, Raymond J.</au><au>Gran, Evan H. Campbell</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrating count and detection—nondetection data to model population dynamics</atitle><jtitle>Ecology (Durham)</jtitle><addtitle>Ecology</addtitle><date>2017-06</date><risdate>2017</risdate><volume>98</volume><issue>6</issue><spage>1640</spage><epage>1650</epage><pages>1640-1650</pages><issn>0012-9658</issn><eissn>1939-9170</eissn><abstract>There is increasing need for methods that integrate multiple data types into a single analytical framework as the spatial and temporal scale of ecological research expands. Current work on this topic primarily focuses on combining capture–recapture data from marked individuals with other data types into integrated population models. Yet, studies of species distributions and trends often rely on data from unmarked individuals across broad scales where local abundance and environmental variables may vary. We present a modeling framework for integrating detection–nondetection and count data into a single analysis to estimate population dynamics, abundance, and individual detection probabilities during sampling. Our dynamic population model assumes that site-specific abundance can change over time according to survival of individuals and gains through reproduction and immigration. The observation process for each data type is modeled by assuming that every individual present at a site has an equal probability of being detected during sampling processes. We examine our modeling approach through a series of simulations illustrating the relative value of count vs. detection-nondetection data under a variety of parameter values and survey configurations. We also provide an empirical example of the model by combining long-term detection-nondetection data (1995–2014) with newly collected count data (2015–2016) from a growing population of Barred Owl (Strix varia) in the Pacific Northwest to examine the factors influencing population abundance over time. Our model provides a foundation for incorporating unmarked data within a single framework, even in cases where sampling processes yield different detection probabilities. This approach will be useful for survey design and to researchers interested in incorporating historical or citizen science data into analyses focused on understanding how demographic rates drive population abundance.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28369775</pmid><doi>10.1002/ecy.1831</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0012-9658
ispartof Ecology (Durham), 2017-06, Vol.98 (6), p.1640-1650
issn 0012-9658
1939-9170
language eng
recordid cdi_proquest_miscellaneous_1884166187
source Jstor Complete Legacy; MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Animal populations
Animals
Capture-recapture studies
Computer simulation
Dail‐Madsen model
Data analysis
Data models
Data types
Demographics
Demography
detection probability
Ecological distribution
Ecological modeling
Ecological monitoring
Ecological research
Ecology
Empirical analysis
integrated population model
Metapopulation ecology
Models, Theoretical
Northwestern United States
N‐mixture model
occupancy
Owls
Population Dynamics
Population ecology
Population estimates
Sampling
Simulations
Strigiformes
Strix varia
unmarked data
Wildlife ecology
title Integrating count and detection—nondetection data to model population dynamics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A17%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrating%20count%20and%20detection%E2%80%94nondetection%20data%20to%20model%20population%20dynamics&rft.jtitle=Ecology%20(Durham)&rft.au=Zipkin,%20Elise%20F.&rft.date=2017-06&rft.volume=98&rft.issue=6&rft.spage=1640&rft.epage=1650&rft.pages=1640-1650&rft.issn=0012-9658&rft.eissn=1939-9170&rft_id=info:doi/10.1002/ecy.1831&rft_dat=%3Cjstor_proqu%3E26164813%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1903496099&rft_id=info:pmid/28369775&rft_jstor_id=26164813&rfr_iscdi=true