Particle swarm optimization for numerical bifurcation analysis in computational inelasticity

Summary An efficient and robust algorithm to numerically detect material instability or bifurcation is of great importance to the understanding and simulation of material failure in computational and applied mechanics. In this work, an intelligence optimizer, termed the particle swarm optimization,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2017-02, Vol.41 (3), p.442-468
Hauptverfasser: Lai, Zhengshou, Chen, Qiushi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 468
container_issue 3
container_start_page 442
container_title International journal for numerical and analytical methods in geomechanics
container_volume 41
creator Lai, Zhengshou
Chen, Qiushi
description Summary An efficient and robust algorithm to numerically detect material instability or bifurcation is of great importance to the understanding and simulation of material failure in computational and applied mechanics. In this work, an intelligence optimizer, termed the particle swarm optimization, is introduced to the numerical solution of material bifurcation problem consisting of finding the bifurcation time as well as the corresponding bifurcation directions. The detection of material bifurcation is approached as a constrained minimization problem where the determinant of the acoustic tensor is minimized. The performance of the particle swarm optimization method is tested through numerical bifurcation analysis on both small and finite deformation material models in computational inelasticity with increasing complexity. Compared with conventional numerical approaches to detect material bifurcation, the proposed method demonstrates superior performance in terms of both computational efficiency and robustness. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nag.2657
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884135364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868320991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3827-87bce7558d73555672ec0f9c925052ed0a944a8a06e0ff80b0a0d5898b1f6a553</originalsourceid><addsrcrecordid>eNqN0U1LAzEQBuAgCtYq-BMWvHjZOtlsssmxFK1CUQ96E5bZNJGU_TLZpay_3m0rCILgaWDm4YXhJeSSwowCJDc1vs8SwbMjMqGgRKwkZ8dkAkywWIGgp-QshA0A8PE6IW_P6DunSxOFLfoqatrOVe4TO9fUkW18VPeV8U5jGRXO9l4fLlhjOQQXIldHuqnavtvvR-VqU2IYI103nJMTi2UwF99zSl7vbl8W9_HqafmwmK9iZDLJYpkV2mScy3XGOOciS4wGq7RKOPDErAFVmqJEEAaslVAAwppLJQtqBXLOpuT6kNv65qM3ocsrF7QpS6xN04ecSplSxplI_0GFZAkoRUd69Ytumt6PP-4V42nCBf0J1L4JwRubt95V6IecQr5rJB8byXeNjDQ-0K0rzfCnyx_ny73_ArVYjLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863542561</pqid></control><display><type>article</type><title>Particle swarm optimization for numerical bifurcation analysis in computational inelasticity</title><source>Wiley Online Library All Journals</source><creator>Lai, Zhengshou ; Chen, Qiushi</creator><creatorcontrib>Lai, Zhengshou ; Chen, Qiushi</creatorcontrib><description>Summary An efficient and robust algorithm to numerically detect material instability or bifurcation is of great importance to the understanding and simulation of material failure in computational and applied mechanics. In this work, an intelligence optimizer, termed the particle swarm optimization, is introduced to the numerical solution of material bifurcation problem consisting of finding the bifurcation time as well as the corresponding bifurcation directions. The detection of material bifurcation is approached as a constrained minimization problem where the determinant of the acoustic tensor is minimized. The performance of the particle swarm optimization method is tested through numerical bifurcation analysis on both small and finite deformation material models in computational inelasticity with increasing complexity. Compared with conventional numerical approaches to detect material bifurcation, the proposed method demonstrates superior performance in terms of both computational efficiency and robustness. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.2657</identifier><identifier>CODEN: IJNGDZ</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Bifurcations ; Computation ; Elasticity ; elasto‐plasticity ; material instability ; Mathematical analysis ; Mathematical models ; optimization ; Robustness (mathematics) ; Swarm intelligence</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2017-02, Vol.41 (3), p.442-468</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3827-87bce7558d73555672ec0f9c925052ed0a944a8a06e0ff80b0a0d5898b1f6a553</citedby><cites>FETCH-LOGICAL-a3827-87bce7558d73555672ec0f9c925052ed0a944a8a06e0ff80b0a0d5898b1f6a553</cites><orcidid>0000-0002-0394-6710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.2657$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.2657$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lai, Zhengshou</creatorcontrib><creatorcontrib>Chen, Qiushi</creatorcontrib><title>Particle swarm optimization for numerical bifurcation analysis in computational inelasticity</title><title>International journal for numerical and analytical methods in geomechanics</title><description>Summary An efficient and robust algorithm to numerically detect material instability or bifurcation is of great importance to the understanding and simulation of material failure in computational and applied mechanics. In this work, an intelligence optimizer, termed the particle swarm optimization, is introduced to the numerical solution of material bifurcation problem consisting of finding the bifurcation time as well as the corresponding bifurcation directions. The detection of material bifurcation is approached as a constrained minimization problem where the determinant of the acoustic tensor is minimized. The performance of the particle swarm optimization method is tested through numerical bifurcation analysis on both small and finite deformation material models in computational inelasticity with increasing complexity. Compared with conventional numerical approaches to detect material bifurcation, the proposed method demonstrates superior performance in terms of both computational efficiency and robustness. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Algorithms</subject><subject>Bifurcations</subject><subject>Computation</subject><subject>Elasticity</subject><subject>elasto‐plasticity</subject><subject>material instability</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>optimization</subject><subject>Robustness (mathematics)</subject><subject>Swarm intelligence</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LAzEQBuAgCtYq-BMWvHjZOtlsssmxFK1CUQ96E5bZNJGU_TLZpay_3m0rCILgaWDm4YXhJeSSwowCJDc1vs8SwbMjMqGgRKwkZ8dkAkywWIGgp-QshA0A8PE6IW_P6DunSxOFLfoqatrOVe4TO9fUkW18VPeV8U5jGRXO9l4fLlhjOQQXIldHuqnavtvvR-VqU2IYI103nJMTi2UwF99zSl7vbl8W9_HqafmwmK9iZDLJYpkV2mScy3XGOOciS4wGq7RKOPDErAFVmqJEEAaslVAAwppLJQtqBXLOpuT6kNv65qM3ocsrF7QpS6xN04ecSplSxplI_0GFZAkoRUd69Ytumt6PP-4V42nCBf0J1L4JwRubt95V6IecQr5rJB8byXeNjDQ-0K0rzfCnyx_ny73_ArVYjLs</recordid><startdate>20170225</startdate><enddate>20170225</enddate><creator>Lai, Zhengshou</creator><creator>Chen, Qiushi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0394-6710</orcidid></search><sort><creationdate>20170225</creationdate><title>Particle swarm optimization for numerical bifurcation analysis in computational inelasticity</title><author>Lai, Zhengshou ; Chen, Qiushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3827-87bce7558d73555672ec0f9c925052ed0a944a8a06e0ff80b0a0d5898b1f6a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bifurcations</topic><topic>Computation</topic><topic>Elasticity</topic><topic>elasto‐plasticity</topic><topic>material instability</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>optimization</topic><topic>Robustness (mathematics)</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Zhengshou</creatorcontrib><creatorcontrib>Chen, Qiushi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Zhengshou</au><au>Chen, Qiushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle swarm optimization for numerical bifurcation analysis in computational inelasticity</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2017-02-25</date><risdate>2017</risdate><volume>41</volume><issue>3</issue><spage>442</spage><epage>468</epage><pages>442-468</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><coden>IJNGDZ</coden><abstract>Summary An efficient and robust algorithm to numerically detect material instability or bifurcation is of great importance to the understanding and simulation of material failure in computational and applied mechanics. In this work, an intelligence optimizer, termed the particle swarm optimization, is introduced to the numerical solution of material bifurcation problem consisting of finding the bifurcation time as well as the corresponding bifurcation directions. The detection of material bifurcation is approached as a constrained minimization problem where the determinant of the acoustic tensor is minimized. The performance of the particle swarm optimization method is tested through numerical bifurcation analysis on both small and finite deformation material models in computational inelasticity with increasing complexity. Compared with conventional numerical approaches to detect material bifurcation, the proposed method demonstrates superior performance in terms of both computational efficiency and robustness. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.2657</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-0394-6710</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2017-02, Vol.41 (3), p.442-468
issn 0363-9061
1096-9853
language eng
recordid cdi_proquest_miscellaneous_1884135364
source Wiley Online Library All Journals
subjects Algorithms
Bifurcations
Computation
Elasticity
elasto‐plasticity
material instability
Mathematical analysis
Mathematical models
optimization
Robustness (mathematics)
Swarm intelligence
title Particle swarm optimization for numerical bifurcation analysis in computational inelasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20swarm%20optimization%20for%20numerical%20bifurcation%20analysis%20in%20computational%20inelasticity&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Lai,%20Zhengshou&rft.date=2017-02-25&rft.volume=41&rft.issue=3&rft.spage=442&rft.epage=468&rft.pages=442-468&rft.issn=0363-9061&rft.eissn=1096-9853&rft.coden=IJNGDZ&rft_id=info:doi/10.1002/nag.2657&rft_dat=%3Cproquest_cross%3E1868320991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863542561&rft_id=info:pmid/&rfr_iscdi=true