Particle swarm optimization for numerical bifurcation analysis in computational inelasticity
Summary An efficient and robust algorithm to numerically detect material instability or bifurcation is of great importance to the understanding and simulation of material failure in computational and applied mechanics. In this work, an intelligence optimizer, termed the particle swarm optimization,...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2017-02, Vol.41 (3), p.442-468 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 468 |
---|---|
container_issue | 3 |
container_start_page | 442 |
container_title | International journal for numerical and analytical methods in geomechanics |
container_volume | 41 |
creator | Lai, Zhengshou Chen, Qiushi |
description | Summary
An efficient and robust algorithm to numerically detect material instability or bifurcation is of great importance to the understanding and simulation of material failure in computational and applied mechanics. In this work, an intelligence optimizer, termed the particle swarm optimization, is introduced to the numerical solution of material bifurcation problem consisting of finding the bifurcation time as well as the corresponding bifurcation directions. The detection of material bifurcation is approached as a constrained minimization problem where the determinant of the acoustic tensor is minimized. The performance of the particle swarm optimization method is tested through numerical bifurcation analysis on both small and finite deformation material models in computational inelasticity with increasing complexity. Compared with conventional numerical approaches to detect material bifurcation, the proposed method demonstrates superior performance in terms of both computational efficiency and robustness. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nag.2657 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884135364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868320991</sourcerecordid><originalsourceid>FETCH-LOGICAL-a3827-87bce7558d73555672ec0f9c925052ed0a944a8a06e0ff80b0a0d5898b1f6a553</originalsourceid><addsrcrecordid>eNqN0U1LAzEQBuAgCtYq-BMWvHjZOtlsssmxFK1CUQ96E5bZNJGU_TLZpay_3m0rCILgaWDm4YXhJeSSwowCJDc1vs8SwbMjMqGgRKwkZ8dkAkywWIGgp-QshA0A8PE6IW_P6DunSxOFLfoqatrOVe4TO9fUkW18VPeV8U5jGRXO9l4fLlhjOQQXIldHuqnavtvvR-VqU2IYI103nJMTi2UwF99zSl7vbl8W9_HqafmwmK9iZDLJYpkV2mScy3XGOOciS4wGq7RKOPDErAFVmqJEEAaslVAAwppLJQtqBXLOpuT6kNv65qM3ocsrF7QpS6xN04ecSplSxplI_0GFZAkoRUd69Ytumt6PP-4V42nCBf0J1L4JwRubt95V6IecQr5rJB8byXeNjDQ-0K0rzfCnyx_ny73_ArVYjLs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1863542561</pqid></control><display><type>article</type><title>Particle swarm optimization for numerical bifurcation analysis in computational inelasticity</title><source>Wiley Online Library All Journals</source><creator>Lai, Zhengshou ; Chen, Qiushi</creator><creatorcontrib>Lai, Zhengshou ; Chen, Qiushi</creatorcontrib><description>Summary
An efficient and robust algorithm to numerically detect material instability or bifurcation is of great importance to the understanding and simulation of material failure in computational and applied mechanics. In this work, an intelligence optimizer, termed the particle swarm optimization, is introduced to the numerical solution of material bifurcation problem consisting of finding the bifurcation time as well as the corresponding bifurcation directions. The detection of material bifurcation is approached as a constrained minimization problem where the determinant of the acoustic tensor is minimized. The performance of the particle swarm optimization method is tested through numerical bifurcation analysis on both small and finite deformation material models in computational inelasticity with increasing complexity. Compared with conventional numerical approaches to detect material bifurcation, the proposed method demonstrates superior performance in terms of both computational efficiency and robustness. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.2657</identifier><identifier>CODEN: IJNGDZ</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Bifurcations ; Computation ; Elasticity ; elasto‐plasticity ; material instability ; Mathematical analysis ; Mathematical models ; optimization ; Robustness (mathematics) ; Swarm intelligence</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2017-02, Vol.41 (3), p.442-468</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a3827-87bce7558d73555672ec0f9c925052ed0a944a8a06e0ff80b0a0d5898b1f6a553</citedby><cites>FETCH-LOGICAL-a3827-87bce7558d73555672ec0f9c925052ed0a944a8a06e0ff80b0a0d5898b1f6a553</cites><orcidid>0000-0002-0394-6710</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.2657$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.2657$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Lai, Zhengshou</creatorcontrib><creatorcontrib>Chen, Qiushi</creatorcontrib><title>Particle swarm optimization for numerical bifurcation analysis in computational inelasticity</title><title>International journal for numerical and analytical methods in geomechanics</title><description>Summary
An efficient and robust algorithm to numerically detect material instability or bifurcation is of great importance to the understanding and simulation of material failure in computational and applied mechanics. In this work, an intelligence optimizer, termed the particle swarm optimization, is introduced to the numerical solution of material bifurcation problem consisting of finding the bifurcation time as well as the corresponding bifurcation directions. The detection of material bifurcation is approached as a constrained minimization problem where the determinant of the acoustic tensor is minimized. The performance of the particle swarm optimization method is tested through numerical bifurcation analysis on both small and finite deformation material models in computational inelasticity with increasing complexity. Compared with conventional numerical approaches to detect material bifurcation, the proposed method demonstrates superior performance in terms of both computational efficiency and robustness. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>Algorithms</subject><subject>Bifurcations</subject><subject>Computation</subject><subject>Elasticity</subject><subject>elasto‐plasticity</subject><subject>material instability</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>optimization</subject><subject>Robustness (mathematics)</subject><subject>Swarm intelligence</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqN0U1LAzEQBuAgCtYq-BMWvHjZOtlsssmxFK1CUQ96E5bZNJGU_TLZpay_3m0rCILgaWDm4YXhJeSSwowCJDc1vs8SwbMjMqGgRKwkZ8dkAkywWIGgp-QshA0A8PE6IW_P6DunSxOFLfoqatrOVe4TO9fUkW18VPeV8U5jGRXO9l4fLlhjOQQXIldHuqnavtvvR-VqU2IYI103nJMTi2UwF99zSl7vbl8W9_HqafmwmK9iZDLJYpkV2mScy3XGOOciS4wGq7RKOPDErAFVmqJEEAaslVAAwppLJQtqBXLOpuT6kNv65qM3ocsrF7QpS6xN04ecSplSxplI_0GFZAkoRUd69Ytumt6PP-4V42nCBf0J1L4JwRubt95V6IecQr5rJB8byXeNjDQ-0K0rzfCnyx_ny73_ArVYjLs</recordid><startdate>20170225</startdate><enddate>20170225</enddate><creator>Lai, Zhengshou</creator><creator>Chen, Qiushi</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0394-6710</orcidid></search><sort><creationdate>20170225</creationdate><title>Particle swarm optimization for numerical bifurcation analysis in computational inelasticity</title><author>Lai, Zhengshou ; Chen, Qiushi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a3827-87bce7558d73555672ec0f9c925052ed0a944a8a06e0ff80b0a0d5898b1f6a553</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Bifurcations</topic><topic>Computation</topic><topic>Elasticity</topic><topic>elasto‐plasticity</topic><topic>material instability</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>optimization</topic><topic>Robustness (mathematics)</topic><topic>Swarm intelligence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lai, Zhengshou</creatorcontrib><creatorcontrib>Chen, Qiushi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lai, Zhengshou</au><au>Chen, Qiushi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle swarm optimization for numerical bifurcation analysis in computational inelasticity</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2017-02-25</date><risdate>2017</risdate><volume>41</volume><issue>3</issue><spage>442</spage><epage>468</epage><pages>442-468</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><coden>IJNGDZ</coden><abstract>Summary
An efficient and robust algorithm to numerically detect material instability or bifurcation is of great importance to the understanding and simulation of material failure in computational and applied mechanics. In this work, an intelligence optimizer, termed the particle swarm optimization, is introduced to the numerical solution of material bifurcation problem consisting of finding the bifurcation time as well as the corresponding bifurcation directions. The detection of material bifurcation is approached as a constrained minimization problem where the determinant of the acoustic tensor is minimized. The performance of the particle swarm optimization method is tested through numerical bifurcation analysis on both small and finite deformation material models in computational inelasticity with increasing complexity. Compared with conventional numerical approaches to detect material bifurcation, the proposed method demonstrates superior performance in terms of both computational efficiency and robustness. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.2657</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0002-0394-6710</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9061 |
ispartof | International journal for numerical and analytical methods in geomechanics, 2017-02, Vol.41 (3), p.442-468 |
issn | 0363-9061 1096-9853 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884135364 |
source | Wiley Online Library All Journals |
subjects | Algorithms Bifurcations Computation Elasticity elasto‐plasticity material instability Mathematical analysis Mathematical models optimization Robustness (mathematics) Swarm intelligence |
title | Particle swarm optimization for numerical bifurcation analysis in computational inelasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20swarm%20optimization%20for%20numerical%20bifurcation%20analysis%20in%20computational%20inelasticity&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Lai,%20Zhengshou&rft.date=2017-02-25&rft.volume=41&rft.issue=3&rft.spage=442&rft.epage=468&rft.pages=442-468&rft.issn=0363-9061&rft.eissn=1096-9853&rft.coden=IJNGDZ&rft_id=info:doi/10.1002/nag.2657&rft_dat=%3Cproquest_cross%3E1868320991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1863542561&rft_id=info:pmid/&rfr_iscdi=true |