Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials

Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and opto...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2017-02, Vol.29 (6), p.np-n/a
Hauptverfasser: Park, Kyung Sun, Baek, Jangmi, Park, Yoonkyung, Lee, Lynn, Hyon, Jinho, Koo Lee, Yong‐Eun, Shrestha, Nabeen K., Kang, Youngjong, Sung, Myung Mo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 6
container_start_page np
container_title Advanced materials (Weinheim)
container_volume 29
creator Park, Kyung Sun
Baek, Jangmi
Park, Yoonkyung
Lee, Lynn
Hyon, Jinho
Koo Lee, Yong‐Eun
Shrestha, Nabeen K.
Kang, Youngjong
Sung, Myung Mo
description Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and optoelectronic devices relies on high‐quality single crystals that show optimal intrinsic charge‐transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high‐performance organic integrated electronics are also addressed. The manufacturing of high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement on a substrate. Innovative crystal growth and patterning methods for organic electronic materials have been developed to obtain high performance organic electronics. Notably, effective heterogeneous integration of single‐crystal organic semiconductors in a monolithic way will enable considerable progress to be made towards a new era of high‐performance organic electronics.
doi_str_mv 10.1002/adma.201603285
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884133883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1844026047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4065-d276e70842b1b6aef334c75eb7c21ccbc53e0a796ac9b60a557a5a67a6516cb53</originalsourceid><addsrcrecordid>eNqNkbtOAkEUhidGI4i2lmYTG5vFM_fZkuAFjIRCrSezw4BLlh2dWWLofASf0SdxEdTERqvTfOc7-c-P0DGGLgYg52ayMF0CWAAliu-gNuYEpwwyvovakFGeZoKpFjqIcQ4AmQCxj1pEKsUlQBvdDFztgp-5yvllTEa-8mVRPxY2GVa1mwVTF75K_DS5K6pZ6d5f3_phFWtTJuMwM1XDjUwjKEwZD9HetBnuaDs76OHq8r4_SG_H18N-7za1DARPJ0QKJ0ExkuNcGDellFnJXS4twdbmllMHRmbC2CwXYDiXhhshjeBY2JzTDjrbeJ-Cf166WOtFEa0rS_OZQWOlGKZUKfoPlDEgAphs0NNf6NwvQ9UE0TgjwJr34vXt7oaywccY3FQ_hWJhwkpj0OtC9LoQ_V1Is3Cy1S7zhZt8418NNEC2AV6K0q3-0Onexaj3I_8A9FaXLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920432815</pqid></control><display><type>article</type><title>Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials</title><source>Wiley Online Library</source><creator>Park, Kyung Sun ; Baek, Jangmi ; Park, Yoonkyung ; Lee, Lynn ; Hyon, Jinho ; Koo Lee, Yong‐Eun ; Shrestha, Nabeen K. ; Kang, Youngjong ; Sung, Myung Mo</creator><creatorcontrib>Park, Kyung Sun ; Baek, Jangmi ; Park, Yoonkyung ; Lee, Lynn ; Hyon, Jinho ; Koo Lee, Yong‐Eun ; Shrestha, Nabeen K. ; Kang, Youngjong ; Sung, Myung Mo</creatorcontrib><description>Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and optoelectronic devices relies on high‐quality single crystals that show optimal intrinsic charge‐transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high‐performance organic integrated electronics are also addressed. The manufacturing of high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement on a substrate. Innovative crystal growth and patterning methods for organic electronic materials have been developed to obtain high performance organic electronics. Notably, effective heterogeneous integration of single‐crystal organic semiconductors in a monolithic way will enable considerable progress to be made towards a new era of high‐performance organic electronics.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201603285</identifier><identifier>PMID: 27885700</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Circuit design ; Crystal growth ; Crystallinity ; Electric charge ; Electronic circuits ; Electronic components ; Electronic devices ; Electronics ; heterogeneous patterns ; Integrated circuits ; Materials science ; Morphology ; Nanostructure ; Optoelectronic devices ; organic electronics ; organic integrated circuits ; Organic materials ; organic single crystals ; Single crystals ; Substrates ; Transport properties</subject><ispartof>Advanced materials (Weinheim), 2017-02, Vol.29 (6), p.np-n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>Copyright © 2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4065-d276e70842b1b6aef334c75eb7c21ccbc53e0a796ac9b60a557a5a67a6516cb53</citedby><cites>FETCH-LOGICAL-c4065-d276e70842b1b6aef334c75eb7c21ccbc53e0a796ac9b60a557a5a67a6516cb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201603285$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201603285$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27885700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Kyung Sun</creatorcontrib><creatorcontrib>Baek, Jangmi</creatorcontrib><creatorcontrib>Park, Yoonkyung</creatorcontrib><creatorcontrib>Lee, Lynn</creatorcontrib><creatorcontrib>Hyon, Jinho</creatorcontrib><creatorcontrib>Koo Lee, Yong‐Eun</creatorcontrib><creatorcontrib>Shrestha, Nabeen K.</creatorcontrib><creatorcontrib>Kang, Youngjong</creatorcontrib><creatorcontrib>Sung, Myung Mo</creatorcontrib><title>Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and optoelectronic devices relies on high‐quality single crystals that show optimal intrinsic charge‐transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high‐performance organic integrated electronics are also addressed. The manufacturing of high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement on a substrate. Innovative crystal growth and patterning methods for organic electronic materials have been developed to obtain high performance organic electronics. Notably, effective heterogeneous integration of single‐crystal organic semiconductors in a monolithic way will enable considerable progress to be made towards a new era of high‐performance organic electronics.</description><subject>Charge transport</subject><subject>Circuit design</subject><subject>Crystal growth</subject><subject>Crystallinity</subject><subject>Electric charge</subject><subject>Electronic circuits</subject><subject>Electronic components</subject><subject>Electronic devices</subject><subject>Electronics</subject><subject>heterogeneous patterns</subject><subject>Integrated circuits</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Optoelectronic devices</subject><subject>organic electronics</subject><subject>organic integrated circuits</subject><subject>Organic materials</subject><subject>organic single crystals</subject><subject>Single crystals</subject><subject>Substrates</subject><subject>Transport properties</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkbtOAkEUhidGI4i2lmYTG5vFM_fZkuAFjIRCrSezw4BLlh2dWWLofASf0SdxEdTERqvTfOc7-c-P0DGGLgYg52ayMF0CWAAliu-gNuYEpwwyvovakFGeZoKpFjqIcQ4AmQCxj1pEKsUlQBvdDFztgp-5yvllTEa-8mVRPxY2GVa1mwVTF75K_DS5K6pZ6d5f3_phFWtTJuMwM1XDjUwjKEwZD9HetBnuaDs76OHq8r4_SG_H18N-7za1DARPJ0QKJ0ExkuNcGDellFnJXS4twdbmllMHRmbC2CwXYDiXhhshjeBY2JzTDjrbeJ-Cf166WOtFEa0rS_OZQWOlGKZUKfoPlDEgAphs0NNf6NwvQ9UE0TgjwJr34vXt7oaywccY3FQ_hWJhwkpj0OtC9LoQ_V1Is3Cy1S7zhZt8418NNEC2AV6K0q3-0Onexaj3I_8A9FaXLQ</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Park, Kyung Sun</creator><creator>Baek, Jangmi</creator><creator>Park, Yoonkyung</creator><creator>Lee, Lynn</creator><creator>Hyon, Jinho</creator><creator>Koo Lee, Yong‐Eun</creator><creator>Shrestha, Nabeen K.</creator><creator>Kang, Youngjong</creator><creator>Sung, Myung Mo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201702</creationdate><title>Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials</title><author>Park, Kyung Sun ; Baek, Jangmi ; Park, Yoonkyung ; Lee, Lynn ; Hyon, Jinho ; Koo Lee, Yong‐Eun ; Shrestha, Nabeen K. ; Kang, Youngjong ; Sung, Myung Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4065-d276e70842b1b6aef334c75eb7c21ccbc53e0a796ac9b60a557a5a67a6516cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Charge transport</topic><topic>Circuit design</topic><topic>Crystal growth</topic><topic>Crystallinity</topic><topic>Electric charge</topic><topic>Electronic circuits</topic><topic>Electronic components</topic><topic>Electronic devices</topic><topic>Electronics</topic><topic>heterogeneous patterns</topic><topic>Integrated circuits</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Optoelectronic devices</topic><topic>organic electronics</topic><topic>organic integrated circuits</topic><topic>Organic materials</topic><topic>organic single crystals</topic><topic>Single crystals</topic><topic>Substrates</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kyung Sun</creatorcontrib><creatorcontrib>Baek, Jangmi</creatorcontrib><creatorcontrib>Park, Yoonkyung</creatorcontrib><creatorcontrib>Lee, Lynn</creatorcontrib><creatorcontrib>Hyon, Jinho</creatorcontrib><creatorcontrib>Koo Lee, Yong‐Eun</creatorcontrib><creatorcontrib>Shrestha, Nabeen K.</creatorcontrib><creatorcontrib>Kang, Youngjong</creatorcontrib><creatorcontrib>Sung, Myung Mo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kyung Sun</au><au>Baek, Jangmi</au><au>Park, Yoonkyung</au><au>Lee, Lynn</au><au>Hyon, Jinho</au><au>Koo Lee, Yong‐Eun</au><au>Shrestha, Nabeen K.</au><au>Kang, Youngjong</au><au>Sung, Myung Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-02</date><risdate>2017</risdate><volume>29</volume><issue>6</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and optoelectronic devices relies on high‐quality single crystals that show optimal intrinsic charge‐transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high‐performance organic integrated electronics are also addressed. The manufacturing of high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement on a substrate. Innovative crystal growth and patterning methods for organic electronic materials have been developed to obtain high performance organic electronics. Notably, effective heterogeneous integration of single‐crystal organic semiconductors in a monolithic way will enable considerable progress to be made towards a new era of high‐performance organic electronics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27885700</pmid><doi>10.1002/adma.201603285</doi><tpages>21</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2017-02, Vol.29 (6), p.np-n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1884133883
source Wiley Online Library
subjects Charge transport
Circuit design
Crystal growth
Crystallinity
Electric charge
Electronic circuits
Electronic components
Electronic devices
Electronics
heterogeneous patterns
Integrated circuits
Materials science
Morphology
Nanostructure
Optoelectronic devices
organic electronics
organic integrated circuits
Organic materials
organic single crystals
Single crystals
Substrates
Transport properties
title Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Monolithic%20Integration%20of%20Single%E2%80%90Crystal%20Organic%20Materials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Park,%20Kyung%20Sun&rft.date=2017-02&rft.volume=29&rft.issue=6&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201603285&rft_dat=%3Cproquest_cross%3E1844026047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920432815&rft_id=info:pmid/27885700&rfr_iscdi=true