Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials
Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and opto...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2017-02, Vol.29 (6), p.np-n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 6 |
container_start_page | np |
container_title | Advanced materials (Weinheim) |
container_volume | 29 |
creator | Park, Kyung Sun Baek, Jangmi Park, Yoonkyung Lee, Lynn Hyon, Jinho Koo Lee, Yong‐Eun Shrestha, Nabeen K. Kang, Youngjong Sung, Myung Mo |
description | Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and optoelectronic devices relies on high‐quality single crystals that show optimal intrinsic charge‐transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high‐performance organic integrated electronics are also addressed.
The manufacturing of high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement on a substrate. Innovative crystal growth and patterning methods for organic electronic materials have been developed to obtain high performance organic electronics. Notably, effective heterogeneous integration of single‐crystal organic semiconductors in a monolithic way will enable considerable progress to be made towards a new era of high‐performance organic electronics. |
doi_str_mv | 10.1002/adma.201603285 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884133883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1844026047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4065-d276e70842b1b6aef334c75eb7c21ccbc53e0a796ac9b60a557a5a67a6516cb53</originalsourceid><addsrcrecordid>eNqNkbtOAkEUhidGI4i2lmYTG5vFM_fZkuAFjIRCrSezw4BLlh2dWWLofASf0SdxEdTERqvTfOc7-c-P0DGGLgYg52ayMF0CWAAliu-gNuYEpwwyvovakFGeZoKpFjqIcQ4AmQCxj1pEKsUlQBvdDFztgp-5yvllTEa-8mVRPxY2GVa1mwVTF75K_DS5K6pZ6d5f3_phFWtTJuMwM1XDjUwjKEwZD9HetBnuaDs76OHq8r4_SG_H18N-7za1DARPJ0QKJ0ExkuNcGDellFnJXS4twdbmllMHRmbC2CwXYDiXhhshjeBY2JzTDjrbeJ-Cf166WOtFEa0rS_OZQWOlGKZUKfoPlDEgAphs0NNf6NwvQ9UE0TgjwJr34vXt7oaywccY3FQ_hWJhwkpj0OtC9LoQ_V1Is3Cy1S7zhZt8418NNEC2AV6K0q3-0Onexaj3I_8A9FaXLQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1920432815</pqid></control><display><type>article</type><title>Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials</title><source>Wiley Online Library</source><creator>Park, Kyung Sun ; Baek, Jangmi ; Park, Yoonkyung ; Lee, Lynn ; Hyon, Jinho ; Koo Lee, Yong‐Eun ; Shrestha, Nabeen K. ; Kang, Youngjong ; Sung, Myung Mo</creator><creatorcontrib>Park, Kyung Sun ; Baek, Jangmi ; Park, Yoonkyung ; Lee, Lynn ; Hyon, Jinho ; Koo Lee, Yong‐Eun ; Shrestha, Nabeen K. ; Kang, Youngjong ; Sung, Myung Mo</creatorcontrib><description>Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and optoelectronic devices relies on high‐quality single crystals that show optimal intrinsic charge‐transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high‐performance organic integrated electronics are also addressed.
The manufacturing of high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement on a substrate. Innovative crystal growth and patterning methods for organic electronic materials have been developed to obtain high performance organic electronics. Notably, effective heterogeneous integration of single‐crystal organic semiconductors in a monolithic way will enable considerable progress to be made towards a new era of high‐performance organic electronics.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201603285</identifier><identifier>PMID: 27885700</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Charge transport ; Circuit design ; Crystal growth ; Crystallinity ; Electric charge ; Electronic circuits ; Electronic components ; Electronic devices ; Electronics ; heterogeneous patterns ; Integrated circuits ; Materials science ; Morphology ; Nanostructure ; Optoelectronic devices ; organic electronics ; organic integrated circuits ; Organic materials ; organic single crystals ; Single crystals ; Substrates ; Transport properties</subject><ispartof>Advanced materials (Weinheim), 2017-02, Vol.29 (6), p.np-n/a</ispartof><rights>2016 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>Copyright © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4065-d276e70842b1b6aef334c75eb7c21ccbc53e0a796ac9b60a557a5a67a6516cb53</citedby><cites>FETCH-LOGICAL-c4065-d276e70842b1b6aef334c75eb7c21ccbc53e0a796ac9b60a557a5a67a6516cb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201603285$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201603285$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27885700$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Kyung Sun</creatorcontrib><creatorcontrib>Baek, Jangmi</creatorcontrib><creatorcontrib>Park, Yoonkyung</creatorcontrib><creatorcontrib>Lee, Lynn</creatorcontrib><creatorcontrib>Hyon, Jinho</creatorcontrib><creatorcontrib>Koo Lee, Yong‐Eun</creatorcontrib><creatorcontrib>Shrestha, Nabeen K.</creatorcontrib><creatorcontrib>Kang, Youngjong</creatorcontrib><creatorcontrib>Sung, Myung Mo</creatorcontrib><title>Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and optoelectronic devices relies on high‐quality single crystals that show optimal intrinsic charge‐transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high‐performance organic integrated electronics are also addressed.
The manufacturing of high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement on a substrate. Innovative crystal growth and patterning methods for organic electronic materials have been developed to obtain high performance organic electronics. Notably, effective heterogeneous integration of single‐crystal organic semiconductors in a monolithic way will enable considerable progress to be made towards a new era of high‐performance organic electronics.</description><subject>Charge transport</subject><subject>Circuit design</subject><subject>Crystal growth</subject><subject>Crystallinity</subject><subject>Electric charge</subject><subject>Electronic circuits</subject><subject>Electronic components</subject><subject>Electronic devices</subject><subject>Electronics</subject><subject>heterogeneous patterns</subject><subject>Integrated circuits</subject><subject>Materials science</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>Optoelectronic devices</subject><subject>organic electronics</subject><subject>organic integrated circuits</subject><subject>Organic materials</subject><subject>organic single crystals</subject><subject>Single crystals</subject><subject>Substrates</subject><subject>Transport properties</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkbtOAkEUhidGI4i2lmYTG5vFM_fZkuAFjIRCrSezw4BLlh2dWWLofASf0SdxEdTERqvTfOc7-c-P0DGGLgYg52ayMF0CWAAliu-gNuYEpwwyvovakFGeZoKpFjqIcQ4AmQCxj1pEKsUlQBvdDFztgp-5yvllTEa-8mVRPxY2GVa1mwVTF75K_DS5K6pZ6d5f3_phFWtTJuMwM1XDjUwjKEwZD9HetBnuaDs76OHq8r4_SG_H18N-7za1DARPJ0QKJ0ExkuNcGDellFnJXS4twdbmllMHRmbC2CwXYDiXhhshjeBY2JzTDjrbeJ-Cf166WOtFEa0rS_OZQWOlGKZUKfoPlDEgAphs0NNf6NwvQ9UE0TgjwJr34vXt7oaywccY3FQ_hWJhwkpj0OtC9LoQ_V1Is3Cy1S7zhZt8418NNEC2AV6K0q3-0Onexaj3I_8A9FaXLQ</recordid><startdate>201702</startdate><enddate>201702</enddate><creator>Park, Kyung Sun</creator><creator>Baek, Jangmi</creator><creator>Park, Yoonkyung</creator><creator>Lee, Lynn</creator><creator>Hyon, Jinho</creator><creator>Koo Lee, Yong‐Eun</creator><creator>Shrestha, Nabeen K.</creator><creator>Kang, Youngjong</creator><creator>Sung, Myung Mo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope></search><sort><creationdate>201702</creationdate><title>Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials</title><author>Park, Kyung Sun ; Baek, Jangmi ; Park, Yoonkyung ; Lee, Lynn ; Hyon, Jinho ; Koo Lee, Yong‐Eun ; Shrestha, Nabeen K. ; Kang, Youngjong ; Sung, Myung Mo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4065-d276e70842b1b6aef334c75eb7c21ccbc53e0a796ac9b60a557a5a67a6516cb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Charge transport</topic><topic>Circuit design</topic><topic>Crystal growth</topic><topic>Crystallinity</topic><topic>Electric charge</topic><topic>Electronic circuits</topic><topic>Electronic components</topic><topic>Electronic devices</topic><topic>Electronics</topic><topic>heterogeneous patterns</topic><topic>Integrated circuits</topic><topic>Materials science</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>Optoelectronic devices</topic><topic>organic electronics</topic><topic>organic integrated circuits</topic><topic>Organic materials</topic><topic>organic single crystals</topic><topic>Single crystals</topic><topic>Substrates</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Kyung Sun</creatorcontrib><creatorcontrib>Baek, Jangmi</creatorcontrib><creatorcontrib>Park, Yoonkyung</creatorcontrib><creatorcontrib>Lee, Lynn</creatorcontrib><creatorcontrib>Hyon, Jinho</creatorcontrib><creatorcontrib>Koo Lee, Yong‐Eun</creatorcontrib><creatorcontrib>Shrestha, Nabeen K.</creatorcontrib><creatorcontrib>Kang, Youngjong</creatorcontrib><creatorcontrib>Sung, Myung Mo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Kyung Sun</au><au>Baek, Jangmi</au><au>Park, Yoonkyung</au><au>Lee, Lynn</au><au>Hyon, Jinho</au><au>Koo Lee, Yong‐Eun</au><au>Shrestha, Nabeen K.</au><au>Kang, Youngjong</au><au>Sung, Myung Mo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2017-02</date><risdate>2017</risdate><volume>29</volume><issue>6</issue><spage>np</spage><epage>n/a</epage><pages>np-n/a</pages><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Manufacturing high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement. In particular, the development of high‐performance organic electronic and optoelectronic devices relies on high‐quality single crystals that show optimal intrinsic charge‐transport properties and electrical performance. Moreover, the heterogeneous integration of organic materials on a single substrate in a monolithic way is highly demanded for the production of fundamental organic electronic components as well as complex integrated circuits. Many of the various methods that have been designed to pattern multiple heterogeneous organic materials on a substrate and the heterogeneous integration of organic single crystals with their crystal growth are described here. Critical issues that have been encountered in the development of high‐performance organic integrated electronics are also addressed.
The manufacturing of high‐performance organic electronic circuits requires the effective heterogeneous integration of different nanoscale organic materials with uniform morphology and high crystallinity in a desired arrangement on a substrate. Innovative crystal growth and patterning methods for organic electronic materials have been developed to obtain high performance organic electronics. Notably, effective heterogeneous integration of single‐crystal organic semiconductors in a monolithic way will enable considerable progress to be made towards a new era of high‐performance organic electronics.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27885700</pmid><doi>10.1002/adma.201603285</doi><tpages>21</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2017-02, Vol.29 (6), p.np-n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884133883 |
source | Wiley Online Library |
subjects | Charge transport Circuit design Crystal growth Crystallinity Electric charge Electronic circuits Electronic components Electronic devices Electronics heterogeneous patterns Integrated circuits Materials science Morphology Nanostructure Optoelectronic devices organic electronics organic integrated circuits Organic materials organic single crystals Single crystals Substrates Transport properties |
title | Heterogeneous Monolithic Integration of Single‐Crystal Organic Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T07%3A45%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heterogeneous%20Monolithic%20Integration%20of%20Single%E2%80%90Crystal%20Organic%20Materials&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Park,%20Kyung%20Sun&rft.date=2017-02&rft.volume=29&rft.issue=6&rft.spage=np&rft.epage=n/a&rft.pages=np-n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201603285&rft_dat=%3Cproquest_cross%3E1844026047%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1920432815&rft_id=info:pmid/27885700&rfr_iscdi=true |