Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin

A molecularly imprinted polymer (MIP)‐based chemosensor for the selective determination of a chosen toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated. By means of DFT, the structure of the pre‐polymerization (functional monomer)–template complex was modeled. This complex was then poten...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2017-02, Vol.23 (8), p.1942-1949
Hauptverfasser: Lach, Patrycja, Sharma, Piyush Sindhu, Golebiewska, Karolina, Cieplak, Maciej, D'Souza, Francis, Kutner, Wlodzimierz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1949
container_issue 8
container_start_page 1942
container_title Chemistry : a European journal
container_volume 23
creator Lach, Patrycja
Sharma, Piyush Sindhu
Golebiewska, Karolina
Cieplak, Maciej
D'Souza, Francis
Kutner, Wlodzimierz
description A molecularly imprinted polymer (MIP)‐based chemosensor for the selective determination of a chosen toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated. By means of DFT, the structure of the pre‐polymerization (functional monomer)–template complex was modeled. This complex was then potentiodynamically electropolymerized in the presence of cross‐linking monomer to form a MIP–Pro‐NO thin film. Next, the Pro‐NO template was extracted from MIP–Pro‐NO with 0.1 m NaOH. Piezoelectric microgravimetry (PM) on an electrochemical quartz crystal microbalance and electrochemical (differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS)) techniques were used to transduce binding of Pro‐NO to molecular cavities of the MIP–Pro‐NO. With DPV and EIS chemosensing, the limits of detection (LODs) were about 80.9 and 36.9 nM Pro‐NO, respectively; and the selectivity coefficients for urea, glucose, creatinine, and adrenalin interferences were 6.6, 13.2, 2.1, and 2.0, respectively, with DPV as well as 2.3, 2.0, 3.3, and 2.5, respectively, with EIS. With PM under flow injection analysis conditions, the LOD was 10 μm Pro‐NO. The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products. Plastic antibodies for food safety: A molecularly imprinted polymer (MIP, “plastic antibody”)‐based chemosensor for the selective determination of a chosen food toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated (see figure). The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products.
doi_str_mv 10.1002/chem.201604799
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884132884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4312281831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5429-e50b94285ebe380dadea60679575c9cebb27596371136eff3048c8a4957e22513</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhyhFZ4sIliz_iryNaWlqpLUiUc-QkE-HKiRc7AfbGT-A38kuY1ZYicaGHmbHkZ17NzEvIc87WnDHxuvsM41owrlltnHtAVlwJXkmj1UOyYq42lVbSHZEnpdwwxpyW8jE5EpZhA5crsr1MEbol-hx39Hzc5jDN0NMPKe5GyHSD8qnAVFKmA8ZHQHoOX4G-hRnyGCY_hzTRNFA_0atfP35ehTmnkvAVMbY5xTABPU2pp9fpe5iekkeDjwWe3dZj8un05HpzVl28f3e-eXNRdaoWrgLFWlcLq6AFaVnve_CaaeOUUZ3roG2FUbiN4VxqGAbJattZX-M_CKG4PCavDro4wpcFytyMoXQQo58gLaXh1uIBBOZ7oEZYbp2290CVVk5Itkdf_oPepCVPuDNSWglpjdFIrQ9Uh1crGYYGLRh93jWcNXuHm73DzZ3D2PDiVnZpR-jv8D-WIuAOwLcQYfcfuWZzdnL5V_w3zX-0fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865238776</pqid></control><display><type>article</type><title>Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Lach, Patrycja ; Sharma, Piyush Sindhu ; Golebiewska, Karolina ; Cieplak, Maciej ; D'Souza, Francis ; Kutner, Wlodzimierz</creator><creatorcontrib>Lach, Patrycja ; Sharma, Piyush Sindhu ; Golebiewska, Karolina ; Cieplak, Maciej ; D'Souza, Francis ; Kutner, Wlodzimierz</creatorcontrib><description>A molecularly imprinted polymer (MIP)‐based chemosensor for the selective determination of a chosen toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated. By means of DFT, the structure of the pre‐polymerization (functional monomer)–template complex was modeled. This complex was then potentiodynamically electropolymerized in the presence of cross‐linking monomer to form a MIP–Pro‐NO thin film. Next, the Pro‐NO template was extracted from MIP–Pro‐NO with 0.1 m NaOH. Piezoelectric microgravimetry (PM) on an electrochemical quartz crystal microbalance and electrochemical (differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS)) techniques were used to transduce binding of Pro‐NO to molecular cavities of the MIP–Pro‐NO. With DPV and EIS chemosensing, the limits of detection (LODs) were about 80.9 and 36.9 nM Pro‐NO, respectively; and the selectivity coefficients for urea, glucose, creatinine, and adrenalin interferences were 6.6, 13.2, 2.1, and 2.0, respectively, with DPV as well as 2.3, 2.0, 3.3, and 2.5, respectively, with EIS. With PM under flow injection analysis conditions, the LOD was 10 μm Pro‐NO. The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products. Plastic antibodies for food safety: A molecularly imprinted polymer (MIP, “plastic antibody”)‐based chemosensor for the selective determination of a chosen food toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated (see figure). The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201604799</identifier><identifier>PMID: 28060413</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>analytical methods ; Chemical sensors ; Chemistry ; Chemoreceptors ; Creatinine - chemistry ; Dielectric Spectroscopy ; Electrochemical impedance spectroscopy ; Electrochemical Techniques ; Epinephrine - chemistry ; Ferrocyanides - chemistry ; Food Contamination - analysis ; food toxins ; Foods ; Glucose - chemistry ; imprinted ; Imprinted polymers ; Limit of Detection ; Microbalances ; Molecular Imprinting - methods ; Nitrosamines - analysis ; Nitrosamines - chemistry ; Polymerization ; polymers ; Polymers - chemistry ; Quartz Crystal Microbalance Techniques ; Selectivity ; Toxins</subject><ispartof>Chemistry : a European journal, 2017-02, Vol.23 (8), p.1942-1949</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5429-e50b94285ebe380dadea60679575c9cebb27596371136eff3048c8a4957e22513</citedby><cites>FETCH-LOGICAL-c5429-e50b94285ebe380dadea60679575c9cebb27596371136eff3048c8a4957e22513</cites><orcidid>0000-0003-3586-5170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201604799$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201604799$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28060413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lach, Patrycja</creatorcontrib><creatorcontrib>Sharma, Piyush Sindhu</creatorcontrib><creatorcontrib>Golebiewska, Karolina</creatorcontrib><creatorcontrib>Cieplak, Maciej</creatorcontrib><creatorcontrib>D'Souza, Francis</creatorcontrib><creatorcontrib>Kutner, Wlodzimierz</creatorcontrib><title>Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>A molecularly imprinted polymer (MIP)‐based chemosensor for the selective determination of a chosen toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated. By means of DFT, the structure of the pre‐polymerization (functional monomer)–template complex was modeled. This complex was then potentiodynamically electropolymerized in the presence of cross‐linking monomer to form a MIP–Pro‐NO thin film. Next, the Pro‐NO template was extracted from MIP–Pro‐NO with 0.1 m NaOH. Piezoelectric microgravimetry (PM) on an electrochemical quartz crystal microbalance and electrochemical (differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS)) techniques were used to transduce binding of Pro‐NO to molecular cavities of the MIP–Pro‐NO. With DPV and EIS chemosensing, the limits of detection (LODs) were about 80.9 and 36.9 nM Pro‐NO, respectively; and the selectivity coefficients for urea, glucose, creatinine, and adrenalin interferences were 6.6, 13.2, 2.1, and 2.0, respectively, with DPV as well as 2.3, 2.0, 3.3, and 2.5, respectively, with EIS. With PM under flow injection analysis conditions, the LOD was 10 μm Pro‐NO. The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products. Plastic antibodies for food safety: A molecularly imprinted polymer (MIP, “plastic antibody”)‐based chemosensor for the selective determination of a chosen food toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated (see figure). The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products.</description><subject>analytical methods</subject><subject>Chemical sensors</subject><subject>Chemistry</subject><subject>Chemoreceptors</subject><subject>Creatinine - chemistry</subject><subject>Dielectric Spectroscopy</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemical Techniques</subject><subject>Epinephrine - chemistry</subject><subject>Ferrocyanides - chemistry</subject><subject>Food Contamination - analysis</subject><subject>food toxins</subject><subject>Foods</subject><subject>Glucose - chemistry</subject><subject>imprinted</subject><subject>Imprinted polymers</subject><subject>Limit of Detection</subject><subject>Microbalances</subject><subject>Molecular Imprinting - methods</subject><subject>Nitrosamines - analysis</subject><subject>Nitrosamines - chemistry</subject><subject>Polymerization</subject><subject>polymers</subject><subject>Polymers - chemistry</subject><subject>Quartz Crystal Microbalance Techniques</subject><subject>Selectivity</subject><subject>Toxins</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EokvhyhFZ4sIliz_iryNaWlqpLUiUc-QkE-HKiRc7AfbGT-A38kuY1ZYicaGHmbHkZ17NzEvIc87WnDHxuvsM41owrlltnHtAVlwJXkmj1UOyYq42lVbSHZEnpdwwxpyW8jE5EpZhA5crsr1MEbol-hx39Hzc5jDN0NMPKe5GyHSD8qnAVFKmA8ZHQHoOX4G-hRnyGCY_hzTRNFA_0atfP35ehTmnkvAVMbY5xTABPU2pp9fpe5iekkeDjwWe3dZj8un05HpzVl28f3e-eXNRdaoWrgLFWlcLq6AFaVnve_CaaeOUUZ3roG2FUbiN4VxqGAbJattZX-M_CKG4PCavDro4wpcFytyMoXQQo58gLaXh1uIBBOZ7oEZYbp2290CVVk5Itkdf_oPepCVPuDNSWglpjdFIrQ9Uh1crGYYGLRh93jWcNXuHm73DzZ3D2PDiVnZpR-jv8D-WIuAOwLcQYfcfuWZzdnL5V_w3zX-0fQ</recordid><startdate>20170203</startdate><enddate>20170203</enddate><creator>Lach, Patrycja</creator><creator>Sharma, Piyush Sindhu</creator><creator>Golebiewska, Karolina</creator><creator>Cieplak, Maciej</creator><creator>D'Souza, Francis</creator><creator>Kutner, Wlodzimierz</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>7U7</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0003-3586-5170</orcidid></search><sort><creationdate>20170203</creationdate><title>Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin</title><author>Lach, Patrycja ; Sharma, Piyush Sindhu ; Golebiewska, Karolina ; Cieplak, Maciej ; D'Souza, Francis ; Kutner, Wlodzimierz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5429-e50b94285ebe380dadea60679575c9cebb27596371136eff3048c8a4957e22513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>analytical methods</topic><topic>Chemical sensors</topic><topic>Chemistry</topic><topic>Chemoreceptors</topic><topic>Creatinine - chemistry</topic><topic>Dielectric Spectroscopy</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemical Techniques</topic><topic>Epinephrine - chemistry</topic><topic>Ferrocyanides - chemistry</topic><topic>Food Contamination - analysis</topic><topic>food toxins</topic><topic>Foods</topic><topic>Glucose - chemistry</topic><topic>imprinted</topic><topic>Imprinted polymers</topic><topic>Limit of Detection</topic><topic>Microbalances</topic><topic>Molecular Imprinting - methods</topic><topic>Nitrosamines - analysis</topic><topic>Nitrosamines - chemistry</topic><topic>Polymerization</topic><topic>polymers</topic><topic>Polymers - chemistry</topic><topic>Quartz Crystal Microbalance Techniques</topic><topic>Selectivity</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lach, Patrycja</creatorcontrib><creatorcontrib>Sharma, Piyush Sindhu</creatorcontrib><creatorcontrib>Golebiewska, Karolina</creatorcontrib><creatorcontrib>Cieplak, Maciej</creatorcontrib><creatorcontrib>D'Souza, Francis</creatorcontrib><creatorcontrib>Kutner, Wlodzimierz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lach, Patrycja</au><au>Sharma, Piyush Sindhu</au><au>Golebiewska, Karolina</au><au>Cieplak, Maciej</au><au>D'Souza, Francis</au><au>Kutner, Wlodzimierz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2017-02-03</date><risdate>2017</risdate><volume>23</volume><issue>8</issue><spage>1942</spage><epage>1949</epage><pages>1942-1949</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>A molecularly imprinted polymer (MIP)‐based chemosensor for the selective determination of a chosen toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated. By means of DFT, the structure of the pre‐polymerization (functional monomer)–template complex was modeled. This complex was then potentiodynamically electropolymerized in the presence of cross‐linking monomer to form a MIP–Pro‐NO thin film. Next, the Pro‐NO template was extracted from MIP–Pro‐NO with 0.1 m NaOH. Piezoelectric microgravimetry (PM) on an electrochemical quartz crystal microbalance and electrochemical (differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS)) techniques were used to transduce binding of Pro‐NO to molecular cavities of the MIP–Pro‐NO. With DPV and EIS chemosensing, the limits of detection (LODs) were about 80.9 and 36.9 nM Pro‐NO, respectively; and the selectivity coefficients for urea, glucose, creatinine, and adrenalin interferences were 6.6, 13.2, 2.1, and 2.0, respectively, with DPV as well as 2.3, 2.0, 3.3, and 2.5, respectively, with EIS. With PM under flow injection analysis conditions, the LOD was 10 μm Pro‐NO. The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products. Plastic antibodies for food safety: A molecularly imprinted polymer (MIP, “plastic antibody”)‐based chemosensor for the selective determination of a chosen food toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated (see figure). The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28060413</pmid><doi>10.1002/chem.201604799</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3586-5170</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2017-02, Vol.23 (8), p.1942-1949
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1884132884
source MEDLINE; Access via Wiley Online Library
subjects analytical methods
Chemical sensors
Chemistry
Chemoreceptors
Creatinine - chemistry
Dielectric Spectroscopy
Electrochemical impedance spectroscopy
Electrochemical Techniques
Epinephrine - chemistry
Ferrocyanides - chemistry
Food Contamination - analysis
food toxins
Foods
Glucose - chemistry
imprinted
Imprinted polymers
Limit of Detection
Microbalances
Molecular Imprinting - methods
Nitrosamines - analysis
Nitrosamines - chemistry
Polymerization
polymers
Polymers - chemistry
Quartz Crystal Microbalance Techniques
Selectivity
Toxins
title Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecularly%20Imprinted%20Polymer%20Chemosensor%20for%20Selective%20Determination%20of%20an%20N%E2%80%90Nitroso%E2%80%90l%E2%80%90proline%20Food%20Toxin&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Lach,%20Patrycja&rft.date=2017-02-03&rft.volume=23&rft.issue=8&rft.spage=1942&rft.epage=1949&rft.pages=1942-1949&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201604799&rft_dat=%3Cproquest_cross%3E4312281831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865238776&rft_id=info:pmid/28060413&rfr_iscdi=true