Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin
A molecularly imprinted polymer (MIP)‐based chemosensor for the selective determination of a chosen toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated. By means of DFT, the structure of the pre‐polymerization (functional monomer)–template complex was modeled. This complex was then poten...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2017-02, Vol.23 (8), p.1942-1949 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1949 |
---|---|
container_issue | 8 |
container_start_page | 1942 |
container_title | Chemistry : a European journal |
container_volume | 23 |
creator | Lach, Patrycja Sharma, Piyush Sindhu Golebiewska, Karolina Cieplak, Maciej D'Souza, Francis Kutner, Wlodzimierz |
description | A molecularly imprinted polymer (MIP)‐based chemosensor for the selective determination of a chosen toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated. By means of DFT, the structure of the pre‐polymerization (functional monomer)–template complex was modeled. This complex was then potentiodynamically electropolymerized in the presence of cross‐linking monomer to form a MIP–Pro‐NO thin film. Next, the Pro‐NO template was extracted from MIP–Pro‐NO with 0.1 m NaOH. Piezoelectric microgravimetry (PM) on an electrochemical quartz crystal microbalance and electrochemical (differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS)) techniques were used to transduce binding of Pro‐NO to molecular cavities of the MIP–Pro‐NO. With DPV and EIS chemosensing, the limits of detection (LODs) were about 80.9 and 36.9 nM Pro‐NO, respectively; and the selectivity coefficients for urea, glucose, creatinine, and adrenalin interferences were 6.6, 13.2, 2.1, and 2.0, respectively, with DPV as well as 2.3, 2.0, 3.3, and 2.5, respectively, with EIS. With PM under flow injection analysis conditions, the LOD was 10 μm Pro‐NO. The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products.
Plastic antibodies for food safety: A molecularly imprinted polymer (MIP, “plastic antibody”)‐based chemosensor for the selective determination of a chosen food toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated (see figure). The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products. |
doi_str_mv | 10.1002/chem.201604799 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884132884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4312281831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5429-e50b94285ebe380dadea60679575c9cebb27596371136eff3048c8a4957e22513</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi0EokvhyhFZ4sIliz_iryNaWlqpLUiUc-QkE-HKiRc7AfbGT-A38kuY1ZYicaGHmbHkZ17NzEvIc87WnDHxuvsM41owrlltnHtAVlwJXkmj1UOyYq42lVbSHZEnpdwwxpyW8jE5EpZhA5crsr1MEbol-hx39Hzc5jDN0NMPKe5GyHSD8qnAVFKmA8ZHQHoOX4G-hRnyGCY_hzTRNFA_0atfP35ehTmnkvAVMbY5xTABPU2pp9fpe5iekkeDjwWe3dZj8un05HpzVl28f3e-eXNRdaoWrgLFWlcLq6AFaVnve_CaaeOUUZ3roG2FUbiN4VxqGAbJattZX-M_CKG4PCavDro4wpcFytyMoXQQo58gLaXh1uIBBOZ7oEZYbp2290CVVk5Itkdf_oPepCVPuDNSWglpjdFIrQ9Uh1crGYYGLRh93jWcNXuHm73DzZ3D2PDiVnZpR-jv8D-WIuAOwLcQYfcfuWZzdnL5V_w3zX-0fQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865238776</pqid></control><display><type>article</type><title>Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Lach, Patrycja ; Sharma, Piyush Sindhu ; Golebiewska, Karolina ; Cieplak, Maciej ; D'Souza, Francis ; Kutner, Wlodzimierz</creator><creatorcontrib>Lach, Patrycja ; Sharma, Piyush Sindhu ; Golebiewska, Karolina ; Cieplak, Maciej ; D'Souza, Francis ; Kutner, Wlodzimierz</creatorcontrib><description>A molecularly imprinted polymer (MIP)‐based chemosensor for the selective determination of a chosen toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated. By means of DFT, the structure of the pre‐polymerization (functional monomer)–template complex was modeled. This complex was then potentiodynamically electropolymerized in the presence of cross‐linking monomer to form a MIP–Pro‐NO thin film. Next, the Pro‐NO template was extracted from MIP–Pro‐NO with 0.1 m NaOH. Piezoelectric microgravimetry (PM) on an electrochemical quartz crystal microbalance and electrochemical (differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS)) techniques were used to transduce binding of Pro‐NO to molecular cavities of the MIP–Pro‐NO. With DPV and EIS chemosensing, the limits of detection (LODs) were about 80.9 and 36.9 nM Pro‐NO, respectively; and the selectivity coefficients for urea, glucose, creatinine, and adrenalin interferences were 6.6, 13.2, 2.1, and 2.0, respectively, with DPV as well as 2.3, 2.0, 3.3, and 2.5, respectively, with EIS. With PM under flow injection analysis conditions, the LOD was 10 μm Pro‐NO. The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products.
Plastic antibodies for food safety: A molecularly imprinted polymer (MIP, “plastic antibody”)‐based chemosensor for the selective determination of a chosen food toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated (see figure). The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201604799</identifier><identifier>PMID: 28060413</identifier><identifier>CODEN: CEUJED</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>analytical methods ; Chemical sensors ; Chemistry ; Chemoreceptors ; Creatinine - chemistry ; Dielectric Spectroscopy ; Electrochemical impedance spectroscopy ; Electrochemical Techniques ; Epinephrine - chemistry ; Ferrocyanides - chemistry ; Food Contamination - analysis ; food toxins ; Foods ; Glucose - chemistry ; imprinted ; Imprinted polymers ; Limit of Detection ; Microbalances ; Molecular Imprinting - methods ; Nitrosamines - analysis ; Nitrosamines - chemistry ; Polymerization ; polymers ; Polymers - chemistry ; Quartz Crystal Microbalance Techniques ; Selectivity ; Toxins</subject><ispartof>Chemistry : a European journal, 2017-02, Vol.23 (8), p.1942-1949</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5429-e50b94285ebe380dadea60679575c9cebb27596371136eff3048c8a4957e22513</citedby><cites>FETCH-LOGICAL-c5429-e50b94285ebe380dadea60679575c9cebb27596371136eff3048c8a4957e22513</cites><orcidid>0000-0003-3586-5170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201604799$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201604799$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,782,786,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28060413$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lach, Patrycja</creatorcontrib><creatorcontrib>Sharma, Piyush Sindhu</creatorcontrib><creatorcontrib>Golebiewska, Karolina</creatorcontrib><creatorcontrib>Cieplak, Maciej</creatorcontrib><creatorcontrib>D'Souza, Francis</creatorcontrib><creatorcontrib>Kutner, Wlodzimierz</creatorcontrib><title>Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>A molecularly imprinted polymer (MIP)‐based chemosensor for the selective determination of a chosen toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated. By means of DFT, the structure of the pre‐polymerization (functional monomer)–template complex was modeled. This complex was then potentiodynamically electropolymerized in the presence of cross‐linking monomer to form a MIP–Pro‐NO thin film. Next, the Pro‐NO template was extracted from MIP–Pro‐NO with 0.1 m NaOH. Piezoelectric microgravimetry (PM) on an electrochemical quartz crystal microbalance and electrochemical (differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS)) techniques were used to transduce binding of Pro‐NO to molecular cavities of the MIP–Pro‐NO. With DPV and EIS chemosensing, the limits of detection (LODs) were about 80.9 and 36.9 nM Pro‐NO, respectively; and the selectivity coefficients for urea, glucose, creatinine, and adrenalin interferences were 6.6, 13.2, 2.1, and 2.0, respectively, with DPV as well as 2.3, 2.0, 3.3, and 2.5, respectively, with EIS. With PM under flow injection analysis conditions, the LOD was 10 μm Pro‐NO. The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products.
Plastic antibodies for food safety: A molecularly imprinted polymer (MIP, “plastic antibody”)‐based chemosensor for the selective determination of a chosen food toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated (see figure). The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products.</description><subject>analytical methods</subject><subject>Chemical sensors</subject><subject>Chemistry</subject><subject>Chemoreceptors</subject><subject>Creatinine - chemistry</subject><subject>Dielectric Spectroscopy</subject><subject>Electrochemical impedance spectroscopy</subject><subject>Electrochemical Techniques</subject><subject>Epinephrine - chemistry</subject><subject>Ferrocyanides - chemistry</subject><subject>Food Contamination - analysis</subject><subject>food toxins</subject><subject>Foods</subject><subject>Glucose - chemistry</subject><subject>imprinted</subject><subject>Imprinted polymers</subject><subject>Limit of Detection</subject><subject>Microbalances</subject><subject>Molecular Imprinting - methods</subject><subject>Nitrosamines - analysis</subject><subject>Nitrosamines - chemistry</subject><subject>Polymerization</subject><subject>polymers</subject><subject>Polymers - chemistry</subject><subject>Quartz Crystal Microbalance Techniques</subject><subject>Selectivity</subject><subject>Toxins</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkU1v1DAQhi0EokvhyhFZ4sIliz_iryNaWlqpLUiUc-QkE-HKiRc7AfbGT-A38kuY1ZYicaGHmbHkZ17NzEvIc87WnDHxuvsM41owrlltnHtAVlwJXkmj1UOyYq42lVbSHZEnpdwwxpyW8jE5EpZhA5crsr1MEbol-hx39Hzc5jDN0NMPKe5GyHSD8qnAVFKmA8ZHQHoOX4G-hRnyGCY_hzTRNFA_0atfP35ehTmnkvAVMbY5xTABPU2pp9fpe5iekkeDjwWe3dZj8un05HpzVl28f3e-eXNRdaoWrgLFWlcLq6AFaVnve_CaaeOUUZ3roG2FUbiN4VxqGAbJattZX-M_CKG4PCavDro4wpcFytyMoXQQo58gLaXh1uIBBOZ7oEZYbp2290CVVk5Itkdf_oPepCVPuDNSWglpjdFIrQ9Uh1crGYYGLRh93jWcNXuHm73DzZ3D2PDiVnZpR-jv8D-WIuAOwLcQYfcfuWZzdnL5V_w3zX-0fQ</recordid><startdate>20170203</startdate><enddate>20170203</enddate><creator>Lach, Patrycja</creator><creator>Sharma, Piyush Sindhu</creator><creator>Golebiewska, Karolina</creator><creator>Cieplak, Maciej</creator><creator>D'Souza, Francis</creator><creator>Kutner, Wlodzimierz</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>7U7</scope><scope>C1K</scope><orcidid>https://orcid.org/0000-0003-3586-5170</orcidid></search><sort><creationdate>20170203</creationdate><title>Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin</title><author>Lach, Patrycja ; Sharma, Piyush Sindhu ; Golebiewska, Karolina ; Cieplak, Maciej ; D'Souza, Francis ; Kutner, Wlodzimierz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5429-e50b94285ebe380dadea60679575c9cebb27596371136eff3048c8a4957e22513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>analytical methods</topic><topic>Chemical sensors</topic><topic>Chemistry</topic><topic>Chemoreceptors</topic><topic>Creatinine - chemistry</topic><topic>Dielectric Spectroscopy</topic><topic>Electrochemical impedance spectroscopy</topic><topic>Electrochemical Techniques</topic><topic>Epinephrine - chemistry</topic><topic>Ferrocyanides - chemistry</topic><topic>Food Contamination - analysis</topic><topic>food toxins</topic><topic>Foods</topic><topic>Glucose - chemistry</topic><topic>imprinted</topic><topic>Imprinted polymers</topic><topic>Limit of Detection</topic><topic>Microbalances</topic><topic>Molecular Imprinting - methods</topic><topic>Nitrosamines - analysis</topic><topic>Nitrosamines - chemistry</topic><topic>Polymerization</topic><topic>polymers</topic><topic>Polymers - chemistry</topic><topic>Quartz Crystal Microbalance Techniques</topic><topic>Selectivity</topic><topic>Toxins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lach, Patrycja</creatorcontrib><creatorcontrib>Sharma, Piyush Sindhu</creatorcontrib><creatorcontrib>Golebiewska, Karolina</creatorcontrib><creatorcontrib>Cieplak, Maciej</creatorcontrib><creatorcontrib>D'Souza, Francis</creatorcontrib><creatorcontrib>Kutner, Wlodzimierz</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lach, Patrycja</au><au>Sharma, Piyush Sindhu</au><au>Golebiewska, Karolina</au><au>Cieplak, Maciej</au><au>D'Souza, Francis</au><au>Kutner, Wlodzimierz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2017-02-03</date><risdate>2017</risdate><volume>23</volume><issue>8</issue><spage>1942</spage><epage>1949</epage><pages>1942-1949</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><coden>CEUJED</coden><abstract>A molecularly imprinted polymer (MIP)‐based chemosensor for the selective determination of a chosen toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated. By means of DFT, the structure of the pre‐polymerization (functional monomer)–template complex was modeled. This complex was then potentiodynamically electropolymerized in the presence of cross‐linking monomer to form a MIP–Pro‐NO thin film. Next, the Pro‐NO template was extracted from MIP–Pro‐NO with 0.1 m NaOH. Piezoelectric microgravimetry (PM) on an electrochemical quartz crystal microbalance and electrochemical (differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS)) techniques were used to transduce binding of Pro‐NO to molecular cavities of the MIP–Pro‐NO. With DPV and EIS chemosensing, the limits of detection (LODs) were about 80.9 and 36.9 nM Pro‐NO, respectively; and the selectivity coefficients for urea, glucose, creatinine, and adrenalin interferences were 6.6, 13.2, 2.1, and 2.0, respectively, with DPV as well as 2.3, 2.0, 3.3, and 2.5, respectively, with EIS. With PM under flow injection analysis conditions, the LOD was 10 μm Pro‐NO. The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products.
Plastic antibodies for food safety: A molecularly imprinted polymer (MIP, “plastic antibody”)‐based chemosensor for the selective determination of a chosen food toxin, N‐nitroso‐l‐proline (Pro‐NO), was devised and fabricated (see figure). The MIP–Pro‐NO chemosensor detectability and selectivity with respect to interferences were sufficiently high to determine Pro‐NO in protein‐providing food products.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>28060413</pmid><doi>10.1002/chem.201604799</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3586-5170</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2017-02, Vol.23 (8), p.1942-1949 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884132884 |
source | MEDLINE; Access via Wiley Online Library |
subjects | analytical methods Chemical sensors Chemistry Chemoreceptors Creatinine - chemistry Dielectric Spectroscopy Electrochemical impedance spectroscopy Electrochemical Techniques Epinephrine - chemistry Ferrocyanides - chemistry Food Contamination - analysis food toxins Foods Glucose - chemistry imprinted Imprinted polymers Limit of Detection Microbalances Molecular Imprinting - methods Nitrosamines - analysis Nitrosamines - chemistry Polymerization polymers Polymers - chemistry Quartz Crystal Microbalance Techniques Selectivity Toxins |
title | Molecularly Imprinted Polymer Chemosensor for Selective Determination of an N‐Nitroso‐l‐proline Food Toxin |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A12%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecularly%20Imprinted%20Polymer%20Chemosensor%20for%20Selective%20Determination%20of%20an%20N%E2%80%90Nitroso%E2%80%90l%E2%80%90proline%20Food%20Toxin&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Lach,%20Patrycja&rft.date=2017-02-03&rft.volume=23&rft.issue=8&rft.spage=1942&rft.epage=1949&rft.pages=1942-1949&rft.issn=0947-6539&rft.eissn=1521-3765&rft.coden=CEUJED&rft_id=info:doi/10.1002/chem.201604799&rft_dat=%3Cproquest_cross%3E4312281831%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865238776&rft_id=info:pmid/28060413&rfr_iscdi=true |