Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order

Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from point...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sbornik. Mathematics 2016-01, Vol.207 (12), p.1625-1649
1. Verfasser: Aliyev, Z. S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1649
container_issue 12
container_start_page 1625
container_title Sbornik. Mathematics
container_volume 207
creator Aliyev, Z. S.
description Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua. Bibliography: 42 titles.
doi_str_mv 10.1070/SM8369
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884131722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884131722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-e7b3cd2ed9bec47d643ccd4033d242761d1a0e4d1f9099b29435250cc948329b3</originalsourceid><addsrcrecordid>eNpdkE9LxDAUxIsouK76GYIH8VLNv7bpURZdhRUP6rmkyYtmySa7SSsIfnizVDx4evPgxzAzRXFO8DXBDb55eRKsbg-KGeG1KLnA9DBrXPOyqkl9XJyktMYYV5SIWfG9dKGXDvXWjFHJwQaPgkEpuHGv0_5REAdpPfLBO-tBRgT2HfyndCOgbQy9g01CJkQUorZexi-krTEQwQ82e8NulH9mJoxx-NiTEE-LIyNdgrPfOy_e7u9eFw_l6nn5uLhdlYoKNpTQ9ExpCrrtQfFG15wppTlmTFNOm5poIjFwTUyL27anLWcVrbBSLReMtj2bF1eTbw67GyEN3cYmBc5JD2FMHRGCE0YaSjN6OaEqhpQimG4b7SZX6gju9vN207wZvJhAG7bdOpfyucF_6AfO_Xoe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884131722</pqid></control><display><type>article</type><title>Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Aliyev, Z. S.</creator><creatorcontrib>Aliyev, Z. S.</creatorcontrib><description>Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua. Bibliography: 42 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8369</identifier><language>eng</language><publisher>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>bifurcation interval ; bifurcation point ; Bifurcations ; continuum of solutions ; Differential equations ; eigenfunction ; eigenvalue ; Eigenvalues ; Intervals ; Mathematical analysis ; Nonlinearity</subject><ispartof>Sbornik. Mathematics, 2016-01, Vol.207 (12), p.1625-1649</ispartof><rights>2016 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-e7b3cd2ed9bec47d643ccd4033d242761d1a0e4d1f9099b29435250cc948329b3</citedby><cites>FETCH-LOGICAL-c283t-e7b3cd2ed9bec47d643ccd4033d242761d1a0e4d1f9099b29435250cc948329b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8369/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844</link.rule.ids></links><search><creatorcontrib>Aliyev, Z. S.</creatorcontrib><title>Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua. Bibliography: 42 titles.</description><subject>bifurcation interval</subject><subject>bifurcation point</subject><subject>Bifurcations</subject><subject>continuum of solutions</subject><subject>Differential equations</subject><subject>eigenfunction</subject><subject>eigenvalue</subject><subject>Eigenvalues</subject><subject>Intervals</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE9LxDAUxIsouK76GYIH8VLNv7bpURZdhRUP6rmkyYtmySa7SSsIfnizVDx4evPgxzAzRXFO8DXBDb55eRKsbg-KGeG1KLnA9DBrXPOyqkl9XJyktMYYV5SIWfG9dKGXDvXWjFHJwQaPgkEpuHGv0_5REAdpPfLBO-tBRgT2HfyndCOgbQy9g01CJkQUorZexi-krTEQwQ82e8NulH9mJoxx-NiTEE-LIyNdgrPfOy_e7u9eFw_l6nn5uLhdlYoKNpTQ9ExpCrrtQfFG15wppTlmTFNOm5poIjFwTUyL27anLWcVrbBSLReMtj2bF1eTbw67GyEN3cYmBc5JD2FMHRGCE0YaSjN6OaEqhpQimG4b7SZX6gju9vN207wZvJhAG7bdOpfyucF_6AfO_Xoe</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Aliyev, Z. S.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order</title><author>Aliyev, Z. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-e7b3cd2ed9bec47d643ccd4033d242761d1a0e4d1f9099b29435250cc948329b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>bifurcation interval</topic><topic>bifurcation point</topic><topic>Bifurcations</topic><topic>continuum of solutions</topic><topic>Differential equations</topic><topic>eigenfunction</topic><topic>eigenvalue</topic><topic>Eigenvalues</topic><topic>Intervals</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliyev, Z. S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliyev, Z. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>207</volume><issue>12</issue><spage>1625</spage><epage>1649</epage><pages>1625-1649</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua. Bibliography: 42 titles.</abstract><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8369</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2016-01, Vol.207 (12), p.1625-1649
issn 1064-5616
1468-4802
language eng
recordid cdi_proquest_miscellaneous_1884131722
source IOP Publishing Journals; Alma/SFX Local Collection
subjects bifurcation interval
bifurcation point
Bifurcations
continuum of solutions
Differential equations
eigenfunction
eigenvalue
Eigenvalues
Intervals
Mathematical analysis
Nonlinearity
title Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20bifurcation%20of%20solutions%20of%20certain%20nonlinear%20eigenvalue%20problems%20for%20ordinary%20differential%20equations%20of%20fourth%20order&rft.jtitle=Sbornik.%20Mathematics&rft.au=Aliyev,%20Z.%20S.&rft.date=2016-01-01&rft.volume=207&rft.issue=12&rft.spage=1625&rft.epage=1649&rft.pages=1625-1649&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8369&rft_dat=%3Cproquest_iop_j%3E1884131722%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884131722&rft_id=info:pmid/&rfr_iscdi=true