Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order
Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from point...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2016-01, Vol.207 (12), p.1625-1649 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1649 |
---|---|
container_issue | 12 |
container_start_page | 1625 |
container_title | Sbornik. Mathematics |
container_volume | 207 |
creator | Aliyev, Z. S. |
description | Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua. Bibliography: 42 titles. |
doi_str_mv | 10.1070/SM8369 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884131722</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884131722</sourcerecordid><originalsourceid>FETCH-LOGICAL-c283t-e7b3cd2ed9bec47d643ccd4033d242761d1a0e4d1f9099b29435250cc948329b3</originalsourceid><addsrcrecordid>eNpdkE9LxDAUxIsouK76GYIH8VLNv7bpURZdhRUP6rmkyYtmySa7SSsIfnizVDx4evPgxzAzRXFO8DXBDb55eRKsbg-KGeG1KLnA9DBrXPOyqkl9XJyktMYYV5SIWfG9dKGXDvXWjFHJwQaPgkEpuHGv0_5REAdpPfLBO-tBRgT2HfyndCOgbQy9g01CJkQUorZexi-krTEQwQ82e8NulH9mJoxx-NiTEE-LIyNdgrPfOy_e7u9eFw_l6nn5uLhdlYoKNpTQ9ExpCrrtQfFG15wppTlmTFNOm5poIjFwTUyL27anLWcVrbBSLReMtj2bF1eTbw67GyEN3cYmBc5JD2FMHRGCE0YaSjN6OaEqhpQimG4b7SZX6gju9vN207wZvJhAG7bdOpfyucF_6AfO_Xoe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884131722</pqid></control><display><type>article</type><title>Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Aliyev, Z. S.</creator><creatorcontrib>Aliyev, Z. S.</creatorcontrib><description>Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua. Bibliography: 42 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8369</identifier><language>eng</language><publisher>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>bifurcation interval ; bifurcation point ; Bifurcations ; continuum of solutions ; Differential equations ; eigenfunction ; eigenvalue ; Eigenvalues ; Intervals ; Mathematical analysis ; Nonlinearity</subject><ispartof>Sbornik. Mathematics, 2016-01, Vol.207 (12), p.1625-1649</ispartof><rights>2016 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c283t-e7b3cd2ed9bec47d643ccd4033d242761d1a0e4d1f9099b29435250cc948329b3</citedby><cites>FETCH-LOGICAL-c283t-e7b3cd2ed9bec47d643ccd4033d242761d1a0e4d1f9099b29435250cc948329b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8369/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27922,27923,53844</link.rule.ids></links><search><creatorcontrib>Aliyev, Z. S.</creatorcontrib><title>Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua. Bibliography: 42 titles.</description><subject>bifurcation interval</subject><subject>bifurcation point</subject><subject>Bifurcations</subject><subject>continuum of solutions</subject><subject>Differential equations</subject><subject>eigenfunction</subject><subject>eigenvalue</subject><subject>Eigenvalues</subject><subject>Intervals</subject><subject>Mathematical analysis</subject><subject>Nonlinearity</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpdkE9LxDAUxIsouK76GYIH8VLNv7bpURZdhRUP6rmkyYtmySa7SSsIfnizVDx4evPgxzAzRXFO8DXBDb55eRKsbg-KGeG1KLnA9DBrXPOyqkl9XJyktMYYV5SIWfG9dKGXDvXWjFHJwQaPgkEpuHGv0_5REAdpPfLBO-tBRgT2HfyndCOgbQy9g01CJkQUorZexi-krTEQwQ82e8NulH9mJoxx-NiTEE-LIyNdgrPfOy_e7u9eFw_l6nn5uLhdlYoKNpTQ9ExpCrrtQfFG15wppTlmTFNOm5poIjFwTUyL27anLWcVrbBSLReMtj2bF1eTbw67GyEN3cYmBc5JD2FMHRGCE0YaSjN6OaEqhpQimG4b7SZX6gju9vN207wZvJhAG7bdOpfyucF_6AfO_Xoe</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Aliyev, Z. S.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order</title><author>Aliyev, Z. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c283t-e7b3cd2ed9bec47d643ccd4033d242761d1a0e4d1f9099b29435250cc948329b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>bifurcation interval</topic><topic>bifurcation point</topic><topic>Bifurcations</topic><topic>continuum of solutions</topic><topic>Differential equations</topic><topic>eigenfunction</topic><topic>eigenvalue</topic><topic>Eigenvalues</topic><topic>Intervals</topic><topic>Mathematical analysis</topic><topic>Nonlinearity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aliyev, Z. S.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aliyev, Z. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>207</volume><issue>12</issue><spage>1625</spage><epage>1649</epage><pages>1625-1649</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>Nonlinear eigenvalue problems are investigated for ordinary differential equations of fourth order. Local and global bifurcations of nontrivial solutions of these problems are investigated. It is shown that the set of nontrivial solutions of the problems under consideration that bifurcate from points and intervals of the line of trivial solutions contains unbounded continua. Bibliography: 42 titles.</abstract><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8369</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2016-01, Vol.207 (12), p.1625-1649 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884131722 |
source | IOP Publishing Journals; Alma/SFX Local Collection |
subjects | bifurcation interval bifurcation point Bifurcations continuum of solutions Differential equations eigenfunction eigenvalue Eigenvalues Intervals Mathematical analysis Nonlinearity |
title | Global bifurcation of solutions of certain nonlinear eigenvalue problems for ordinary differential equations of fourth order |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T11%3A17%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20bifurcation%20of%20solutions%20of%20certain%20nonlinear%20eigenvalue%20problems%20for%20ordinary%20differential%20equations%20of%20fourth%20order&rft.jtitle=Sbornik.%20Mathematics&rft.au=Aliyev,%20Z.%20S.&rft.date=2016-01-01&rft.volume=207&rft.issue=12&rft.spage=1625&rft.epage=1649&rft.pages=1625-1649&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8369&rft_dat=%3Cproquest_iop_j%3E1884131722%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884131722&rft_id=info:pmid/&rfr_iscdi=true |