The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models

This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The meth...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pakistan journal of statistics and operation research 2016-01, Vol.12 (2), p.369
Hauptverfasser: Abdel-Ghaly, Abdalla Ahmed, Aly, Hanan Mohamed, Abde-Rahman, Elham Abdel-Malik
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 369
container_title Pakistan journal of statistics and operation research
container_volume 12
creator Abdel-Ghaly, Abdalla Ahmed
Aly, Hanan Mohamed
Abde-Rahman, Elham Abdel-Malik
description This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The method is based on transforming the data into independent and identically distributed (i.i.d) Uniform (0, 1) random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.
doi_str_mv 10.18187/pjsor.v12i2.1035
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884131503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884131503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-25d90f918ca9d56d74ab4eaf87c850f10fb18df5ed9849dae58ca6c0e4e030ea3</originalsourceid><addsrcrecordid>eNpd0UFLwzAUB_AgCg71A3gLePHSmZc2bXocw6mg6KGeQ9q8bBltM5NO8NubbZ48Pfjz4_F4f0Jugc1Bgqwedtvow_wbuONzYLk4IzPOOcuEBHZOZgmVGa8ALslNjK5lvKwrELyakaHZIP2MSL2lSz8aNzk_6p5-BN_q1vVu-qEv44TrkMIm6DFaHwZ9UPQNp403NAW0wTi5cU0XXYc9Bj2hoSvt-n1A2rgB6Zs32MdrcmF1H_Hmb16Rz9Vjs3zOXt-fXpaL16zjQk4ZF6ZmtgbZ6dqI0lSFbgvUVladFMwCsy1IYwWaWha10SiSLDuGBbKcoc6vyP1p7y74r326TQ0upst6PaLfRwVSFpCDYHmid__o1u9DesFBVXlelqKSScFJdcHHGNCqXXCDDj8KmDp2oI4dqGMH6tBB_gsJaX1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1873366578</pqid></control><display><type>article</type><title>The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Abdel-Ghaly, Abdalla Ahmed ; Aly, Hanan Mohamed ; Abde-Rahman, Elham Abdel-Malik</creator><creatorcontrib>Abdel-Ghaly, Abdalla Ahmed ; Aly, Hanan Mohamed ; Abde-Rahman, Elham Abdel-Malik</creatorcontrib><description>This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The method is based on transforming the data into independent and identically distributed (i.i.d) Uniform (0, 1) random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.</description><identifier>ISSN: 1816-2711</identifier><identifier>EISSN: 2220-5810</identifier><identifier>DOI: 10.18187/pjsor.v12i2.1035</identifier><language>eng</language><publisher>Lahore: University of the Punjab, College of Statistical &amp; Actuarial Science</publisher><subject>Conditional probability ; Constants ; Failure times ; Integral transformations ; Pakistan ; Random variables ; Sampling ; Test procedures</subject><ispartof>Pakistan journal of statistics and operation research, 2016-01, Vol.12 (2), p.369</ispartof><rights>Copyright University of the Punjab, College of Statistical &amp; Actuarial Science 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Abdel-Ghaly, Abdalla Ahmed</creatorcontrib><creatorcontrib>Aly, Hanan Mohamed</creatorcontrib><creatorcontrib>Abde-Rahman, Elham Abdel-Malik</creatorcontrib><title>The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models</title><title>Pakistan journal of statistics and operation research</title><description>This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The method is based on transforming the data into independent and identically distributed (i.i.d) Uniform (0, 1) random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.</description><subject>Conditional probability</subject><subject>Constants</subject><subject>Failure times</subject><subject>Integral transformations</subject><subject>Pakistan</subject><subject>Random variables</subject><subject>Sampling</subject><subject>Test procedures</subject><issn>1816-2711</issn><issn>2220-5810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0UFLwzAUB_AgCg71A3gLePHSmZc2bXocw6mg6KGeQ9q8bBltM5NO8NubbZ48Pfjz4_F4f0Jugc1Bgqwedtvow_wbuONzYLk4IzPOOcuEBHZOZgmVGa8ALslNjK5lvKwrELyakaHZIP2MSL2lSz8aNzk_6p5-BN_q1vVu-qEv44TrkMIm6DFaHwZ9UPQNp403NAW0wTi5cU0XXYc9Bj2hoSvt-n1A2rgB6Zs32MdrcmF1H_Hmb16Rz9Vjs3zOXt-fXpaL16zjQk4ZF6ZmtgbZ6dqI0lSFbgvUVladFMwCsy1IYwWaWha10SiSLDuGBbKcoc6vyP1p7y74r326TQ0upst6PaLfRwVSFpCDYHmid__o1u9DesFBVXlelqKSScFJdcHHGNCqXXCDDj8KmDp2oI4dqGMH6tBB_gsJaX1Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Abdel-Ghaly, Abdalla Ahmed</creator><creator>Aly, Hanan Mohamed</creator><creator>Abde-Rahman, Elham Abdel-Malik</creator><general>University of the Punjab, College of Statistical &amp; Actuarial Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160101</creationdate><title>The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models</title><author>Abdel-Ghaly, Abdalla Ahmed ; Aly, Hanan Mohamed ; Abde-Rahman, Elham Abdel-Malik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-25d90f918ca9d56d74ab4eaf87c850f10fb18df5ed9849dae58ca6c0e4e030ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Conditional probability</topic><topic>Constants</topic><topic>Failure times</topic><topic>Integral transformations</topic><topic>Pakistan</topic><topic>Random variables</topic><topic>Sampling</topic><topic>Test procedures</topic><toplevel>online_resources</toplevel><creatorcontrib>Abdel-Ghaly, Abdalla Ahmed</creatorcontrib><creatorcontrib>Aly, Hanan Mohamed</creatorcontrib><creatorcontrib>Abde-Rahman, Elham Abdel-Malik</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Pakistan journal of statistics and operation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel-Ghaly, Abdalla Ahmed</au><au>Aly, Hanan Mohamed</au><au>Abde-Rahman, Elham Abdel-Malik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models</atitle><jtitle>Pakistan journal of statistics and operation research</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>12</volume><issue>2</issue><spage>369</spage><pages>369-</pages><issn>1816-2711</issn><eissn>2220-5810</eissn><abstract>This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The method is based on transforming the data into independent and identically distributed (i.i.d) Uniform (0, 1) random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.</abstract><cop>Lahore</cop><pub>University of the Punjab, College of Statistical &amp; Actuarial Science</pub><doi>10.18187/pjsor.v12i2.1035</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1816-2711
ispartof Pakistan journal of statistics and operation research, 2016-01, Vol.12 (2), p.369
issn 1816-2711
2220-5810
language eng
recordid cdi_proquest_miscellaneous_1884131503
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Conditional probability
Constants
Failure times
Integral transformations
Pakistan
Random variables
Sampling
Test procedures
title The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Use%20of%20Conditional%20Probability%20Integral%20Transformation%20Method%20for%20Testing%20Accelerated%20Failure%20Time%20Models&rft.jtitle=Pakistan%20journal%20of%20statistics%20and%20operation%20research&rft.au=Abdel-Ghaly,%20Abdalla%20Ahmed&rft.date=2016-01-01&rft.volume=12&rft.issue=2&rft.spage=369&rft.pages=369-&rft.issn=1816-2711&rft.eissn=2220-5810&rft_id=info:doi/10.18187/pjsor.v12i2.1035&rft_dat=%3Cproquest_cross%3E1884131503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1873366578&rft_id=info:pmid/&rfr_iscdi=true