The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models
This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The meth...
Gespeichert in:
Veröffentlicht in: | Pakistan journal of statistics and operation research 2016-01, Vol.12 (2), p.369 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 369 |
container_title | Pakistan journal of statistics and operation research |
container_volume | 12 |
creator | Abdel-Ghaly, Abdalla Ahmed Aly, Hanan Mohamed Abde-Rahman, Elham Abdel-Malik |
description | This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The method is based on transforming the data into independent and identically distributed (i.i.d) Uniform (0, 1) random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure. |
doi_str_mv | 10.18187/pjsor.v12i2.1035 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884131503</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884131503</sourcerecordid><originalsourceid>FETCH-LOGICAL-c258t-25d90f918ca9d56d74ab4eaf87c850f10fb18df5ed9849dae58ca6c0e4e030ea3</originalsourceid><addsrcrecordid>eNpd0UFLwzAUB_AgCg71A3gLePHSmZc2bXocw6mg6KGeQ9q8bBltM5NO8NubbZ48Pfjz4_F4f0Jugc1Bgqwedtvow_wbuONzYLk4IzPOOcuEBHZOZgmVGa8ALslNjK5lvKwrELyakaHZIP2MSL2lSz8aNzk_6p5-BN_q1vVu-qEv44TrkMIm6DFaHwZ9UPQNp403NAW0wTi5cU0XXYc9Bj2hoSvt-n1A2rgB6Zs32MdrcmF1H_Hmb16Rz9Vjs3zOXt-fXpaL16zjQk4ZF6ZmtgbZ6dqI0lSFbgvUVladFMwCsy1IYwWaWha10SiSLDuGBbKcoc6vyP1p7y74r326TQ0upst6PaLfRwVSFpCDYHmid__o1u9DesFBVXlelqKSScFJdcHHGNCqXXCDDj8KmDp2oI4dqGMH6tBB_gsJaX1Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1873366578</pqid></control><display><type>article</type><title>The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Abdel-Ghaly, Abdalla Ahmed ; Aly, Hanan Mohamed ; Abde-Rahman, Elham Abdel-Malik</creator><creatorcontrib>Abdel-Ghaly, Abdalla Ahmed ; Aly, Hanan Mohamed ; Abde-Rahman, Elham Abdel-Malik</creatorcontrib><description>This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The method is based on transforming the data into independent and identically distributed (i.i.d) Uniform (0, 1) random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.</description><identifier>ISSN: 1816-2711</identifier><identifier>EISSN: 2220-5810</identifier><identifier>DOI: 10.18187/pjsor.v12i2.1035</identifier><language>eng</language><publisher>Lahore: University of the Punjab, College of Statistical & Actuarial Science</publisher><subject>Conditional probability ; Constants ; Failure times ; Integral transformations ; Pakistan ; Random variables ; Sampling ; Test procedures</subject><ispartof>Pakistan journal of statistics and operation research, 2016-01, Vol.12 (2), p.369</ispartof><rights>Copyright University of the Punjab, College of Statistical & Actuarial Science 2016</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Abdel-Ghaly, Abdalla Ahmed</creatorcontrib><creatorcontrib>Aly, Hanan Mohamed</creatorcontrib><creatorcontrib>Abde-Rahman, Elham Abdel-Malik</creatorcontrib><title>The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models</title><title>Pakistan journal of statistics and operation research</title><description>This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The method is based on transforming the data into independent and identically distributed (i.i.d) Uniform (0, 1) random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.</description><subject>Conditional probability</subject><subject>Constants</subject><subject>Failure times</subject><subject>Integral transformations</subject><subject>Pakistan</subject><subject>Random variables</subject><subject>Sampling</subject><subject>Test procedures</subject><issn>1816-2711</issn><issn>2220-5810</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpd0UFLwzAUB_AgCg71A3gLePHSmZc2bXocw6mg6KGeQ9q8bBltM5NO8NubbZ48Pfjz4_F4f0Jugc1Bgqwedtvow_wbuONzYLk4IzPOOcuEBHZOZgmVGa8ALslNjK5lvKwrELyakaHZIP2MSL2lSz8aNzk_6p5-BN_q1vVu-qEv44TrkMIm6DFaHwZ9UPQNp403NAW0wTi5cU0XXYc9Bj2hoSvt-n1A2rgB6Zs32MdrcmF1H_Hmb16Rz9Vjs3zOXt-fXpaL16zjQk4ZF6ZmtgbZ6dqI0lSFbgvUVladFMwCsy1IYwWaWha10SiSLDuGBbKcoc6vyP1p7y74r326TQ0upst6PaLfRwVSFpCDYHmid__o1u9DesFBVXlelqKSScFJdcHHGNCqXXCDDj8KmDp2oI4dqGMH6tBB_gsJaX1Q</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Abdel-Ghaly, Abdalla Ahmed</creator><creator>Aly, Hanan Mohamed</creator><creator>Abde-Rahman, Elham Abdel-Malik</creator><general>University of the Punjab, College of Statistical & Actuarial Science</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160101</creationdate><title>The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models</title><author>Abdel-Ghaly, Abdalla Ahmed ; Aly, Hanan Mohamed ; Abde-Rahman, Elham Abdel-Malik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c258t-25d90f918ca9d56d74ab4eaf87c850f10fb18df5ed9849dae58ca6c0e4e030ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Conditional probability</topic><topic>Constants</topic><topic>Failure times</topic><topic>Integral transformations</topic><topic>Pakistan</topic><topic>Random variables</topic><topic>Sampling</topic><topic>Test procedures</topic><toplevel>online_resources</toplevel><creatorcontrib>Abdel-Ghaly, Abdalla Ahmed</creatorcontrib><creatorcontrib>Aly, Hanan Mohamed</creatorcontrib><creatorcontrib>Abde-Rahman, Elham Abdel-Malik</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Pakistan journal of statistics and operation research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdel-Ghaly, Abdalla Ahmed</au><au>Aly, Hanan Mohamed</au><au>Abde-Rahman, Elham Abdel-Malik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models</atitle><jtitle>Pakistan journal of statistics and operation research</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>12</volume><issue>2</issue><spage>369</spage><pages>369-</pages><issn>1816-2711</issn><eissn>2220-5810</eissn><abstract>This paper suggests the use of the conditional probability integral transformation (CPIT) method as a goodness of fit (GOF) technique in the field of accelerated life testing (ALT), specifically for validating the underlying distributional assumption in accelerated failure time (AFT) model. The method is based on transforming the data into independent and identically distributed (i.i.d) Uniform (0, 1) random variables and then applying the modified Watson statistic to test the uniformity of the transformed random variables. This technique is used to validate each of the exponential, Weibull and lognormal distributions' assumptions in AFT model under constant stress and complete sampling. The performance of the CPIT method is investigated via a simulation study. It is concluded that this method performs well in case of exponential and lognormal distributions. Finally, a real life example is provided to illustrate the application of the proposed procedure.</abstract><cop>Lahore</cop><pub>University of the Punjab, College of Statistical & Actuarial Science</pub><doi>10.18187/pjsor.v12i2.1035</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1816-2711 |
ispartof | Pakistan journal of statistics and operation research, 2016-01, Vol.12 (2), p.369 |
issn | 1816-2711 2220-5810 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884131503 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Conditional probability Constants Failure times Integral transformations Pakistan Random variables Sampling Test procedures |
title | The Use of Conditional Probability Integral Transformation Method for Testing Accelerated Failure Time Models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A01%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Use%20of%20Conditional%20Probability%20Integral%20Transformation%20Method%20for%20Testing%20Accelerated%20Failure%20Time%20Models&rft.jtitle=Pakistan%20journal%20of%20statistics%20and%20operation%20research&rft.au=Abdel-Ghaly,%20Abdalla%20Ahmed&rft.date=2016-01-01&rft.volume=12&rft.issue=2&rft.spage=369&rft.pages=369-&rft.issn=1816-2711&rft.eissn=2220-5810&rft_id=info:doi/10.18187/pjsor.v12i2.1035&rft_dat=%3Cproquest_cross%3E1884131503%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1873366578&rft_id=info:pmid/&rfr_iscdi=true |