Machine learning for quantum physics

An artificial neural network can discover the ground state of a quantum many-body system Machine learning has been used to beat a human competitor in a game of Go ( 1 ), a game that has long been viewed as the most challenging of board games for artificial intelligence. Research is now under way to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2017-02, Vol.355 (6325), p.580-580
1. Verfasser: Hush, Michael R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 580
container_issue 6325
container_start_page 580
container_title Science (American Association for the Advancement of Science)
container_volume 355
creator Hush, Michael R.
description An artificial neural network can discover the ground state of a quantum many-body system Machine learning has been used to beat a human competitor in a game of Go ( 1 ), a game that has long been viewed as the most challenging of board games for artificial intelligence. Research is now under way to investigate whether machine learning can be used to solve long outstanding problems in quantum science. On page 602 of this issue, Carleo and Troyer ( 2 ) use machine learning on one of quantum science's greatest challenges: the simulation of quantum many-body systems. Carleo and Troyer used an artificial neural network to represent the wave function of a quantum many-body system and to make the neural network "learn" what the ground state (or dynamics) of the system is. Their approach is found to perform better than the current state-of-the-art numerical simulation methods.
doi_str_mv 10.1126/science.aam6564
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884129294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24918339</jstor_id><sourcerecordid>24918339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-9e20f195a7795ced9a337bff22a56c2d4a143711dc4b50e8a97508642ceab2bf3</originalsourceid><addsrcrecordid>eNqN0DtPwzAQB3ALgWgpzEygSDCwpD2_7RFVvKQiFpgjx3FoqjyKnQz99hg1gMTEdMP97nT3R-gcwxxjIhbBVq61bm5MI7hgB2iKQfNUE6CHaApARapA8gk6CWEDEHuaHqMJUVhRTcUUXT8bu65al9TO-LZq35Oy88nHYNp-aJLtehcqG07RUWnq4M7GOkNv93evy8d09fLwtLxdpZYq6FPtCJRYcyOl5tYV2lAq87IkxHBhScEMZlRiXFiWc3DKaMlBCUasMznJSzpDN_u9W999DC70WVMF6-ratK4bQoaVYphootk_qJCcCQAV6dUfuukG38ZHopKcKhLvjWqxV9Z3IXhXZltfNcbvMgzZV9bZmHU2Zh0nLse9Q9644sd_hxvBxR5sQt_53z7TEUTxCWIVg7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875382779</pqid></control><display><type>article</type><title>Machine learning for quantum physics</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Magazine</source><creator>Hush, Michael R.</creator><creatorcontrib>Hush, Michael R.</creatorcontrib><description>An artificial neural network can discover the ground state of a quantum many-body system Machine learning has been used to beat a human competitor in a game of Go ( 1 ), a game that has long been viewed as the most challenging of board games for artificial intelligence. Research is now under way to investigate whether machine learning can be used to solve long outstanding problems in quantum science. On page 602 of this issue, Carleo and Troyer ( 2 ) use machine learning on one of quantum science's greatest challenges: the simulation of quantum many-body systems. Carleo and Troyer used an artificial neural network to represent the wave function of a quantum many-body system and to make the neural network "learn" what the ground state (or dynamics) of the system is. Their approach is found to perform better than the current state-of-the-art numerical simulation methods.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aam6564</identifier><identifier>PMID: 28183936</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Artificial intelligence ; Artificial neural networks ; Boards ; Computer simulation ; Dynamical systems ; Expert systems ; Games ; Learning algorithms ; Machine Learning ; Mathematical models ; Neural networks ; Numerical methods ; PERSPECTIVES ; Physics ; Quantum Theory ; Simulation ; Wave functions</subject><ispartof>Science (American Association for the Advancement of Science), 2017-02, Vol.355 (6325), p.580-580</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-9e20f195a7795ced9a337bff22a56c2d4a143711dc4b50e8a97508642ceab2bf3</citedby><cites>FETCH-LOGICAL-c380t-9e20f195a7795ced9a337bff22a56c2d4a143711dc4b50e8a97508642ceab2bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24918339$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24918339$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28183936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hush, Michael R.</creatorcontrib><title>Machine learning for quantum physics</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>An artificial neural network can discover the ground state of a quantum many-body system Machine learning has been used to beat a human competitor in a game of Go ( 1 ), a game that has long been viewed as the most challenging of board games for artificial intelligence. Research is now under way to investigate whether machine learning can be used to solve long outstanding problems in quantum science. On page 602 of this issue, Carleo and Troyer ( 2 ) use machine learning on one of quantum science's greatest challenges: the simulation of quantum many-body systems. Carleo and Troyer used an artificial neural network to represent the wave function of a quantum many-body system and to make the neural network "learn" what the ground state (or dynamics) of the system is. Their approach is found to perform better than the current state-of-the-art numerical simulation methods.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Boards</subject><subject>Computer simulation</subject><subject>Dynamical systems</subject><subject>Expert systems</subject><subject>Games</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Numerical methods</subject><subject>PERSPECTIVES</subject><subject>Physics</subject><subject>Quantum Theory</subject><subject>Simulation</subject><subject>Wave functions</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0DtPwzAQB3ALgWgpzEygSDCwpD2_7RFVvKQiFpgjx3FoqjyKnQz99hg1gMTEdMP97nT3R-gcwxxjIhbBVq61bm5MI7hgB2iKQfNUE6CHaApARapA8gk6CWEDEHuaHqMJUVhRTcUUXT8bu65al9TO-LZq35Oy88nHYNp-aJLtehcqG07RUWnq4M7GOkNv93evy8d09fLwtLxdpZYq6FPtCJRYcyOl5tYV2lAq87IkxHBhScEMZlRiXFiWc3DKaMlBCUasMznJSzpDN_u9W999DC70WVMF6-ratK4bQoaVYphootk_qJCcCQAV6dUfuukG38ZHopKcKhLvjWqxV9Z3IXhXZltfNcbvMgzZV9bZmHU2Zh0nLse9Q9644sd_hxvBxR5sQt_53z7TEUTxCWIVg7c</recordid><startdate>20170210</startdate><enddate>20170210</enddate><creator>Hush, Michael R.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170210</creationdate><title>Machine learning for quantum physics</title><author>Hush, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-9e20f195a7795ced9a337bff22a56c2d4a143711dc4b50e8a97508642ceab2bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Boards</topic><topic>Computer simulation</topic><topic>Dynamical systems</topic><topic>Expert systems</topic><topic>Games</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Numerical methods</topic><topic>PERSPECTIVES</topic><topic>Physics</topic><topic>Quantum Theory</topic><topic>Simulation</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hush, Michael R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hush, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for quantum physics</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-02-10</date><risdate>2017</risdate><volume>355</volume><issue>6325</issue><spage>580</spage><epage>580</epage><pages>580-580</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>An artificial neural network can discover the ground state of a quantum many-body system Machine learning has been used to beat a human competitor in a game of Go ( 1 ), a game that has long been viewed as the most challenging of board games for artificial intelligence. Research is now under way to investigate whether machine learning can be used to solve long outstanding problems in quantum science. On page 602 of this issue, Carleo and Troyer ( 2 ) use machine learning on one of quantum science's greatest challenges: the simulation of quantum many-body systems. Carleo and Troyer used an artificial neural network to represent the wave function of a quantum many-body system and to make the neural network "learn" what the ground state (or dynamics) of the system is. Their approach is found to perform better than the current state-of-the-art numerical simulation methods.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28183936</pmid><doi>10.1126/science.aam6564</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2017-02, Vol.355 (6325), p.580-580
issn 0036-8075
1095-9203
language eng
recordid cdi_proquest_miscellaneous_1884129294
source Jstor Complete Legacy; MEDLINE; Science Magazine
subjects Artificial intelligence
Artificial neural networks
Boards
Computer simulation
Dynamical systems
Expert systems
Games
Learning algorithms
Machine Learning
Mathematical models
Neural networks
Numerical methods
PERSPECTIVES
Physics
Quantum Theory
Simulation
Wave functions
title Machine learning for quantum physics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T18%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20quantum%20physics&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Hush,%20Michael%20R.&rft.date=2017-02-10&rft.volume=355&rft.issue=6325&rft.spage=580&rft.epage=580&rft.pages=580-580&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aam6564&rft_dat=%3Cjstor_proqu%3E24918339%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875382779&rft_id=info:pmid/28183936&rft_jstor_id=24918339&rfr_iscdi=true