Machine learning for quantum physics
An artificial neural network can discover the ground state of a quantum many-body system Machine learning has been used to beat a human competitor in a game of Go ( 1 ), a game that has long been viewed as the most challenging of board games for artificial intelligence. Research is now under way to...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2017-02, Vol.355 (6325), p.580-580 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 580 |
---|---|
container_issue | 6325 |
container_start_page | 580 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 355 |
creator | Hush, Michael R. |
description | An artificial neural network can discover the ground state of a quantum many-body system
Machine learning has been used to beat a human competitor in a game of Go (
1
), a game that has long been viewed as the most challenging of board games for artificial intelligence. Research is now under way to investigate whether machine learning can be used to solve long outstanding problems in quantum science. On page 602 of this issue, Carleo and Troyer (
2
) use machine learning on one of quantum science's greatest challenges: the simulation of quantum many-body systems. Carleo and Troyer used an artificial neural network to represent the wave function of a quantum many-body system and to make the neural network "learn" what the ground state (or dynamics) of the system is. Their approach is found to perform better than the current state-of-the-art numerical simulation methods. |
doi_str_mv | 10.1126/science.aam6564 |
format | Article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884129294</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24918339</jstor_id><sourcerecordid>24918339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c380t-9e20f195a7795ced9a337bff22a56c2d4a143711dc4b50e8a97508642ceab2bf3</originalsourceid><addsrcrecordid>eNqN0DtPwzAQB3ALgWgpzEygSDCwpD2_7RFVvKQiFpgjx3FoqjyKnQz99hg1gMTEdMP97nT3R-gcwxxjIhbBVq61bm5MI7hgB2iKQfNUE6CHaApARapA8gk6CWEDEHuaHqMJUVhRTcUUXT8bu65al9TO-LZq35Oy88nHYNp-aJLtehcqG07RUWnq4M7GOkNv93evy8d09fLwtLxdpZYq6FPtCJRYcyOl5tYV2lAq87IkxHBhScEMZlRiXFiWc3DKaMlBCUasMznJSzpDN_u9W999DC70WVMF6-ratK4bQoaVYphootk_qJCcCQAV6dUfuukG38ZHopKcKhLvjWqxV9Z3IXhXZltfNcbvMgzZV9bZmHU2Zh0nLse9Q9644sd_hxvBxR5sQt_53z7TEUTxCWIVg7c</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1875382779</pqid></control><display><type>article</type><title>Machine learning for quantum physics</title><source>Jstor Complete Legacy</source><source>MEDLINE</source><source>Science Magazine</source><creator>Hush, Michael R.</creator><creatorcontrib>Hush, Michael R.</creatorcontrib><description>An artificial neural network can discover the ground state of a quantum many-body system
Machine learning has been used to beat a human competitor in a game of Go (
1
), a game that has long been viewed as the most challenging of board games for artificial intelligence. Research is now under way to investigate whether machine learning can be used to solve long outstanding problems in quantum science. On page 602 of this issue, Carleo and Troyer (
2
) use machine learning on one of quantum science's greatest challenges: the simulation of quantum many-body systems. Carleo and Troyer used an artificial neural network to represent the wave function of a quantum many-body system and to make the neural network "learn" what the ground state (or dynamics) of the system is. Their approach is found to perform better than the current state-of-the-art numerical simulation methods.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aam6564</identifier><identifier>PMID: 28183936</identifier><language>eng</language><publisher>United States: American Association for the Advancement of Science</publisher><subject>Artificial intelligence ; Artificial neural networks ; Boards ; Computer simulation ; Dynamical systems ; Expert systems ; Games ; Learning algorithms ; Machine Learning ; Mathematical models ; Neural networks ; Numerical methods ; PERSPECTIVES ; Physics ; Quantum Theory ; Simulation ; Wave functions</subject><ispartof>Science (American Association for the Advancement of Science), 2017-02, Vol.355 (6325), p.580-580</ispartof><rights>Copyright © 2017 American Association for the Advancement of Science</rights><rights>Copyright © 2017, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c380t-9e20f195a7795ced9a337bff22a56c2d4a143711dc4b50e8a97508642ceab2bf3</citedby><cites>FETCH-LOGICAL-c380t-9e20f195a7795ced9a337bff22a56c2d4a143711dc4b50e8a97508642ceab2bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24918339$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24918339$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,776,780,799,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28183936$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hush, Michael R.</creatorcontrib><title>Machine learning for quantum physics</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>An artificial neural network can discover the ground state of a quantum many-body system
Machine learning has been used to beat a human competitor in a game of Go (
1
), a game that has long been viewed as the most challenging of board games for artificial intelligence. Research is now under way to investigate whether machine learning can be used to solve long outstanding problems in quantum science. On page 602 of this issue, Carleo and Troyer (
2
) use machine learning on one of quantum science's greatest challenges: the simulation of quantum many-body systems. Carleo and Troyer used an artificial neural network to represent the wave function of a quantum many-body system and to make the neural network "learn" what the ground state (or dynamics) of the system is. Their approach is found to perform better than the current state-of-the-art numerical simulation methods.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Boards</subject><subject>Computer simulation</subject><subject>Dynamical systems</subject><subject>Expert systems</subject><subject>Games</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Numerical methods</subject><subject>PERSPECTIVES</subject><subject>Physics</subject><subject>Quantum Theory</subject><subject>Simulation</subject><subject>Wave functions</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0DtPwzAQB3ALgWgpzEygSDCwpD2_7RFVvKQiFpgjx3FoqjyKnQz99hg1gMTEdMP97nT3R-gcwxxjIhbBVq61bm5MI7hgB2iKQfNUE6CHaApARapA8gk6CWEDEHuaHqMJUVhRTcUUXT8bu65al9TO-LZq35Oy88nHYNp-aJLtehcqG07RUWnq4M7GOkNv93evy8d09fLwtLxdpZYq6FPtCJRYcyOl5tYV2lAq87IkxHBhScEMZlRiXFiWc3DKaMlBCUasMznJSzpDN_u9W999DC70WVMF6-ratK4bQoaVYphootk_qJCcCQAV6dUfuukG38ZHopKcKhLvjWqxV9Z3IXhXZltfNcbvMgzZV9bZmHU2Zh0nLse9Q9644sd_hxvBxR5sQt_53z7TEUTxCWIVg7c</recordid><startdate>20170210</startdate><enddate>20170210</enddate><creator>Hush, Michael R.</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20170210</creationdate><title>Machine learning for quantum physics</title><author>Hush, Michael R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c380t-9e20f195a7795ced9a337bff22a56c2d4a143711dc4b50e8a97508642ceab2bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Boards</topic><topic>Computer simulation</topic><topic>Dynamical systems</topic><topic>Expert systems</topic><topic>Games</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Numerical methods</topic><topic>PERSPECTIVES</topic><topic>Physics</topic><topic>Quantum Theory</topic><topic>Simulation</topic><topic>Wave functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hush, Michael R.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hush, Michael R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning for quantum physics</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2017-02-10</date><risdate>2017</risdate><volume>355</volume><issue>6325</issue><spage>580</spage><epage>580</epage><pages>580-580</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>An artificial neural network can discover the ground state of a quantum many-body system
Machine learning has been used to beat a human competitor in a game of Go (
1
), a game that has long been viewed as the most challenging of board games for artificial intelligence. Research is now under way to investigate whether machine learning can be used to solve long outstanding problems in quantum science. On page 602 of this issue, Carleo and Troyer (
2
) use machine learning on one of quantum science's greatest challenges: the simulation of quantum many-body systems. Carleo and Troyer used an artificial neural network to represent the wave function of a quantum many-body system and to make the neural network "learn" what the ground state (or dynamics) of the system is. Their approach is found to perform better than the current state-of-the-art numerical simulation methods.</abstract><cop>United States</cop><pub>American Association for the Advancement of Science</pub><pmid>28183936</pmid><doi>10.1126/science.aam6564</doi><tpages>1</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2017-02, Vol.355 (6325), p.580-580 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884129294 |
source | Jstor Complete Legacy; MEDLINE; Science Magazine |
subjects | Artificial intelligence Artificial neural networks Boards Computer simulation Dynamical systems Expert systems Games Learning algorithms Machine Learning Mathematical models Neural networks Numerical methods PERSPECTIVES Physics Quantum Theory Simulation Wave functions |
title | Machine learning for quantum physics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T18%3A49%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20for%20quantum%20physics&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Hush,%20Michael%20R.&rft.date=2017-02-10&rft.volume=355&rft.issue=6325&rft.spage=580&rft.epage=580&rft.pages=580-580&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aam6564&rft_dat=%3Cjstor_proqu%3E24918339%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1875382779&rft_id=info:pmid/28183936&rft_jstor_id=24918339&rfr_iscdi=true |