Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups
We construct and study polyhedral product models for classifying spaces of right-angled Artin and Coxeter groups, general graph product groups and their commutator subgroups. By way of application, we give a criterion for the commutator subgroup of a graph product group to be free, and provide an ex...
Gespeichert in:
Veröffentlicht in: | Sbornik. Mathematics 2016-01, Vol.207 (11), p.1582-1600 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1600 |
---|---|
container_issue | 11 |
container_start_page | 1582 |
container_title | Sbornik. Mathematics |
container_volume | 207 |
creator | Panov, T. E. Veryovkin, Ya. A. |
description | We construct and study polyhedral product models for classifying spaces of right-angled Artin and Coxeter groups, general graph product groups and their commutator subgroups. By way of application, we give a criterion for the commutator subgroup of a graph product group to be free, and provide an explicit minimal set of generators for the commutator subgroup of a right-angled Coxeter group. Bibliography: 21 titles. |
doi_str_mv | 10.1070/SM8701 |
format | Article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884128455</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884128455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-a92a696591a8193eff33e915d248eec0a3567e4e6a694b56c12a0568ba3c0dac3</originalsourceid><addsrcrecordid>eNpt0MtOwzAQBVALgUQp8A0WC2AT8PgVZwkVL6kVSKVry3WcNlUSBzuR6N8TCDtYzSyOrmYuQudAboCk5Ha5UCmBAzQBLlXCFaGHw04kT4QEeYxOYtwRQgQFNUGrN1_tty4PpsJt8Hlvu4hNk2Pr67rvTOcDjv16E3zfRuwLHMrNtktMs6lcju9CVzY_fOY_XecCHuEpOipMFd3Z75yi1ePD--w5mb8-vczu5onlwIaUjBqZSZGBUZAxVxSMuQxETrlyzhLDhEwdd3JQfC2kBWqIkGptmCW5sWyKrsfc4fSP3sVO12W0rqpM43wfNSjFgSouxEAvR2qDjzG4QrehrE3YayD6uzc99jbAixGWvtU734dm-OAvuvoHLZb3mpJUA2gQiuo2L9gXK_h3uQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884128455</pqid></control><display><type>article</type><title>Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups</title><source>IOP Publishing Journals</source><source>Alma/SFX Local Collection</source><creator>Panov, T. E. ; Veryovkin, Ya. A.</creator><creatorcontrib>Panov, T. E. ; Veryovkin, Ya. A.</creatorcontrib><description>We construct and study polyhedral product models for classifying spaces of right-angled Artin and Coxeter groups, general graph product groups and their commutator subgroups. By way of application, we give a criterion for the commutator subgroup of a graph product group to be free, and provide an explicit minimal set of generators for the commutator subgroup of a right-angled Coxeter group. Bibliography: 21 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM8701</identifier><language>eng</language><publisher>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Classification ; commutator subgroup ; Commutators ; Criteria ; Generators ; graph product ; Graphs ; Mathematical models ; polyhedral product ; Product models ; right-angled Artin group ; right-angled Coxeter group ; Subgroups</subject><ispartof>Sbornik. Mathematics, 2016-01, Vol.207 (11), p.1582-1600</ispartof><rights>2016 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-a92a696591a8193eff33e915d248eec0a3567e4e6a694b56c12a0568ba3c0dac3</citedby><cites>FETCH-LOGICAL-c413t-a92a696591a8193eff33e915d248eec0a3567e4e6a694b56c12a0568ba3c0dac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.1070/SM8701/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>314,780,784,27924,27925,53846</link.rule.ids></links><search><creatorcontrib>Panov, T. E.</creatorcontrib><creatorcontrib>Veryovkin, Ya. A.</creatorcontrib><title>Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>We construct and study polyhedral product models for classifying spaces of right-angled Artin and Coxeter groups, general graph product groups and their commutator subgroups. By way of application, we give a criterion for the commutator subgroup of a graph product group to be free, and provide an explicit minimal set of generators for the commutator subgroup of a right-angled Coxeter group. Bibliography: 21 titles.</description><subject>Classification</subject><subject>commutator subgroup</subject><subject>Commutators</subject><subject>Criteria</subject><subject>Generators</subject><subject>graph product</subject><subject>Graphs</subject><subject>Mathematical models</subject><subject>polyhedral product</subject><subject>Product models</subject><subject>right-angled Artin group</subject><subject>right-angled Coxeter group</subject><subject>Subgroups</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNpt0MtOwzAQBVALgUQp8A0WC2AT8PgVZwkVL6kVSKVry3WcNlUSBzuR6N8TCDtYzSyOrmYuQudAboCk5Ha5UCmBAzQBLlXCFaGHw04kT4QEeYxOYtwRQgQFNUGrN1_tty4PpsJt8Hlvu4hNk2Pr67rvTOcDjv16E3zfRuwLHMrNtktMs6lcju9CVzY_fOY_XecCHuEpOipMFd3Z75yi1ePD--w5mb8-vczu5onlwIaUjBqZSZGBUZAxVxSMuQxETrlyzhLDhEwdd3JQfC2kBWqIkGptmCW5sWyKrsfc4fSP3sVO12W0rqpM43wfNSjFgSouxEAvR2qDjzG4QrehrE3YayD6uzc99jbAixGWvtU734dm-OAvuvoHLZb3mpJUA2gQiuo2L9gXK_h3uQ</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Panov, T. E.</creator><creator>Veryovkin, Ya. A.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20160101</creationdate><title>Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups</title><author>Panov, T. E. ; Veryovkin, Ya. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-a92a696591a8193eff33e915d248eec0a3567e4e6a694b56c12a0568ba3c0dac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Classification</topic><topic>commutator subgroup</topic><topic>Commutators</topic><topic>Criteria</topic><topic>Generators</topic><topic>graph product</topic><topic>Graphs</topic><topic>Mathematical models</topic><topic>polyhedral product</topic><topic>Product models</topic><topic>right-angled Artin group</topic><topic>right-angled Coxeter group</topic><topic>Subgroups</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Panov, T. E.</creatorcontrib><creatorcontrib>Veryovkin, Ya. A.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Panov, T. E.</au><au>Veryovkin, Ya. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2016-01-01</date><risdate>2016</risdate><volume>207</volume><issue>11</issue><spage>1582</spage><epage>1600</epage><pages>1582-1600</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>We construct and study polyhedral product models for classifying spaces of right-angled Artin and Coxeter groups, general graph product groups and their commutator subgroups. By way of application, we give a criterion for the commutator subgroup of a graph product group to be free, and provide an explicit minimal set of generators for the commutator subgroup of a right-angled Coxeter group. Bibliography: 21 titles.</abstract><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM8701</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2016-01, Vol.207 (11), p.1582-1600 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884128455 |
source | IOP Publishing Journals; Alma/SFX Local Collection |
subjects | Classification commutator subgroup Commutators Criteria Generators graph product Graphs Mathematical models polyhedral product Product models right-angled Artin group right-angled Coxeter group Subgroups |
title | Polyhedral products and commutator subgroups of right-angled Artin and Coxeter groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A06%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Polyhedral%20products%20and%20commutator%20subgroups%20of%20right-angled%20Artin%20and%20Coxeter%20groups&rft.jtitle=Sbornik.%20Mathematics&rft.au=Panov,%20T.%20E.&rft.date=2016-01-01&rft.volume=207&rft.issue=11&rft.spage=1582&rft.epage=1600&rft.pages=1582-1600&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM8701&rft_dat=%3Cproquest_iop_j%3E1884128455%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884128455&rft_id=info:pmid/&rfr_iscdi=true |