Effect of Nickel Doping on Dielectric, Piezoelectric Properties and Domain Configurations of PZT Based Ceramics

The aims of present study were investigated the effect of nickel doping on the dielectric and piezoelectric properties of P(BN)ZT solid solution. P(BN)ZT powder doped with nickel nanoparticle in the composition of (1-x) PBNZT–xNi when x = 0, 2, 4, 6, 8 and 10 percent by mole. P(BN)ZT doped with nick...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials Science Forum 2017, Vol.883, p.27-31
Hauptverfasser: Zeng, Hua Rong, Li, Guo Rong, Chaipanich, Arnon, Yin, Qing Rui, Jaitanong, Nittaya
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The aims of present study were investigated the effect of nickel doping on the dielectric and piezoelectric properties of P(BN)ZT solid solution. P(BN)ZT powder doped with nickel nanoparticle in the composition of (1-x) PBNZT–xNi when x = 0, 2, 4, 6, 8 and 10 percent by mole. P(BN)ZT doped with nickel powder were calcined at 900 °C for 2 h and sintered at the temperature range of 1150 -1250°C for 2 h with heating/cooling rate of 5 °C/min. The dielectric constant (er) and the dielectric loss tangent (tand) of all ceramics were measured at room temperature using LCR meter. The piezoelectric properties (d33) were measured at room temperature using d33 meter. The micro and nano-domain structure was clearly observed by piezo-response force microscopy (PFM). From the results, it can be seen that the dielectric and piezoelectric decreased with increasing Ni particle of all composition (0.0-0.1 mol%). Moreover, PFM images show that the micro (180°) and nano (90°) domain are orientated at the surface region in submicron-scale of P(BN)ZT ceramics with doped nickel nanoparticle.
ISSN:0255-5476
1662-9752
1662-9752
DOI:10.4028/www.scientific.net/MSF.883.27