Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na-air battery

Binder-free and bifunctional electrocatalysts have vital roles in the development of high-performance metal-air batteries. Herein, we synthesized a vanadium oxide (VO2) nanostructure as a novel binder-free and bifunctional electrocatalyst for a rechargeable aqueous sodium-air (Na-air) battery. VO2 n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017, Vol.5 (5), p.2037-2044
Hauptverfasser: Khan, Ziyauddin, Senthilkumar, Baskar, Park, Sung O, Park, Seungyoung, Yang, Juchan, Lee, Jeong Hyeon, Song, Hyun-Kon, Kim, Youngsik, Kwak, Sang Kyu, Ko, Hyunhyub
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2044
container_issue 5
container_start_page 2037
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 5
creator Khan, Ziyauddin
Senthilkumar, Baskar
Park, Sung O
Park, Seungyoung
Yang, Juchan
Lee, Jeong Hyeon
Song, Hyun-Kon
Kim, Youngsik
Kwak, Sang Kyu
Ko, Hyunhyub
description Binder-free and bifunctional electrocatalysts have vital roles in the development of high-performance metal-air batteries. Herein, we synthesized a vanadium oxide (VO2) nanostructure as a novel binder-free and bifunctional electrocatalyst for a rechargeable aqueous sodium-air (Na-air) battery. VO2 nanostructures were grown on reduced graphene oxide coated on carbon paper, which had a carambola morphology. We confirmed the bifunctional nature of VO2 nanostructures by analyzing their electrocatalytic activity associated with the oxygen reduction reaction and oxygen evolution reaction. The reaction pathway associated with electrocatalytic activity was also affirmed by computational modeling and simulation studies. Thereafter, an aqueous Na-air cell was built using novel binder-free VO2 nanostructures as the air electrode. The fabricated cell displayed a 0.64 V overpotential gap, 104 mW g-1 power density at 80 mA g-1 current density, 81% round trip efficiency and good cyclic stability up to 50 cycles.
doi_str_mv 10.1039/c6ta09375b
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884127872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1868330051</sourcerecordid><originalsourceid>FETCH-LOGICAL-g350t-d08311e2caf674548e57bb898c8cde5e0e8eb91d9224c42b60deb796ed74b46a3</originalsourceid><addsrcrecordid>eNqNjj1LA0EYhBdRMMQ0_oItbU73-8NOghohmEYtDe_uvqeRy13c3Sv89yYo1k4zAzMMDyHnnF1yJv1VNBWYl1aHIzIRTLPGKm-O_7Jzp2RWygfbyzFmvJ-Q1zlk2Iahg6a8ww4TfVkJ2kM_lJrHWMeM5ZoCDZs-YW7ajEhhkyl2GGseEtJ2yBR6Cp8jDmOhj9Ac-gC1Yv46IyctdAVnvz4lz3e3T_NFs1zdP8xvls2b1Kw2iTnJOYoIrbFKK4fahuC8iy4m1MjQYfA8eSFUVCIYljBYbzBZFZQBOSUXP7-7POxBSl1vNyVi10F_oFpz5xQX1lnxj6lxUjKmufwGc59l-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868330051</pqid></control><display><type>article</type><title>Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na-air battery</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Khan, Ziyauddin ; Senthilkumar, Baskar ; Park, Sung O ; Park, Seungyoung ; Yang, Juchan ; Lee, Jeong Hyeon ; Song, Hyun-Kon ; Kim, Youngsik ; Kwak, Sang Kyu ; Ko, Hyunhyub</creator><creatorcontrib>Khan, Ziyauddin ; Senthilkumar, Baskar ; Park, Sung O ; Park, Seungyoung ; Yang, Juchan ; Lee, Jeong Hyeon ; Song, Hyun-Kon ; Kim, Youngsik ; Kwak, Sang Kyu ; Ko, Hyunhyub</creatorcontrib><description>Binder-free and bifunctional electrocatalysts have vital roles in the development of high-performance metal-air batteries. Herein, we synthesized a vanadium oxide (VO2) nanostructure as a novel binder-free and bifunctional electrocatalyst for a rechargeable aqueous sodium-air (Na-air) battery. VO2 nanostructures were grown on reduced graphene oxide coated on carbon paper, which had a carambola morphology. We confirmed the bifunctional nature of VO2 nanostructures by analyzing their electrocatalytic activity associated with the oxygen reduction reaction and oxygen evolution reaction. The reaction pathway associated with electrocatalytic activity was also affirmed by computational modeling and simulation studies. Thereafter, an aqueous Na-air cell was built using novel binder-free VO2 nanostructures as the air electrode. The fabricated cell displayed a 0.64 V overpotential gap, 104 mW g-1 power density at 80 mA g-1 current density, 81% round trip efficiency and good cyclic stability up to 50 cycles.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c6ta09375b</identifier><language>eng</language><subject>Carbon ; Current density ; Electrocatalysts ; Electrodes ; Graphene ; Nanostructure ; Oxygen ; Vanadium oxides</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (5), p.2037-2044</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Khan, Ziyauddin</creatorcontrib><creatorcontrib>Senthilkumar, Baskar</creatorcontrib><creatorcontrib>Park, Sung O</creatorcontrib><creatorcontrib>Park, Seungyoung</creatorcontrib><creatorcontrib>Yang, Juchan</creatorcontrib><creatorcontrib>Lee, Jeong Hyeon</creatorcontrib><creatorcontrib>Song, Hyun-Kon</creatorcontrib><creatorcontrib>Kim, Youngsik</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Ko, Hyunhyub</creatorcontrib><title>Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na-air battery</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Binder-free and bifunctional electrocatalysts have vital roles in the development of high-performance metal-air batteries. Herein, we synthesized a vanadium oxide (VO2) nanostructure as a novel binder-free and bifunctional electrocatalyst for a rechargeable aqueous sodium-air (Na-air) battery. VO2 nanostructures were grown on reduced graphene oxide coated on carbon paper, which had a carambola morphology. We confirmed the bifunctional nature of VO2 nanostructures by analyzing their electrocatalytic activity associated with the oxygen reduction reaction and oxygen evolution reaction. The reaction pathway associated with electrocatalytic activity was also affirmed by computational modeling and simulation studies. Thereafter, an aqueous Na-air cell was built using novel binder-free VO2 nanostructures as the air electrode. The fabricated cell displayed a 0.64 V overpotential gap, 104 mW g-1 power density at 80 mA g-1 current density, 81% round trip efficiency and good cyclic stability up to 50 cycles.</description><subject>Carbon</subject><subject>Current density</subject><subject>Electrocatalysts</subject><subject>Electrodes</subject><subject>Graphene</subject><subject>Nanostructure</subject><subject>Oxygen</subject><subject>Vanadium oxides</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNjj1LA0EYhBdRMMQ0_oItbU73-8NOghohmEYtDe_uvqeRy13c3Sv89yYo1k4zAzMMDyHnnF1yJv1VNBWYl1aHIzIRTLPGKm-O_7Jzp2RWygfbyzFmvJ-Q1zlk2Iahg6a8ww4TfVkJ2kM_lJrHWMeM5ZoCDZs-YW7ajEhhkyl2GGseEtJ2yBR6Cp8jDmOhj9Ac-gC1Yv46IyctdAVnvz4lz3e3T_NFs1zdP8xvls2b1Kw2iTnJOYoIrbFKK4fahuC8iy4m1MjQYfA8eSFUVCIYljBYbzBZFZQBOSUXP7-7POxBSl1vNyVi10F_oFpz5xQX1lnxj6lxUjKmufwGc59l-g</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Khan, Ziyauddin</creator><creator>Senthilkumar, Baskar</creator><creator>Park, Sung O</creator><creator>Park, Seungyoung</creator><creator>Yang, Juchan</creator><creator>Lee, Jeong Hyeon</creator><creator>Song, Hyun-Kon</creator><creator>Kim, Youngsik</creator><creator>Kwak, Sang Kyu</creator><creator>Ko, Hyunhyub</creator><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>2017</creationdate><title>Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na-air battery</title><author>Khan, Ziyauddin ; Senthilkumar, Baskar ; Park, Sung O ; Park, Seungyoung ; Yang, Juchan ; Lee, Jeong Hyeon ; Song, Hyun-Kon ; Kim, Youngsik ; Kwak, Sang Kyu ; Ko, Hyunhyub</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g350t-d08311e2caf674548e57bb898c8cde5e0e8eb91d9224c42b60deb796ed74b46a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Carbon</topic><topic>Current density</topic><topic>Electrocatalysts</topic><topic>Electrodes</topic><topic>Graphene</topic><topic>Nanostructure</topic><topic>Oxygen</topic><topic>Vanadium oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khan, Ziyauddin</creatorcontrib><creatorcontrib>Senthilkumar, Baskar</creatorcontrib><creatorcontrib>Park, Sung O</creatorcontrib><creatorcontrib>Park, Seungyoung</creatorcontrib><creatorcontrib>Yang, Juchan</creatorcontrib><creatorcontrib>Lee, Jeong Hyeon</creatorcontrib><creatorcontrib>Song, Hyun-Kon</creatorcontrib><creatorcontrib>Kim, Youngsik</creatorcontrib><creatorcontrib>Kwak, Sang Kyu</creatorcontrib><creatorcontrib>Ko, Hyunhyub</creatorcontrib><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khan, Ziyauddin</au><au>Senthilkumar, Baskar</au><au>Park, Sung O</au><au>Park, Seungyoung</au><au>Yang, Juchan</au><au>Lee, Jeong Hyeon</au><au>Song, Hyun-Kon</au><au>Kim, Youngsik</au><au>Kwak, Sang Kyu</au><au>Ko, Hyunhyub</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na-air battery</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2017</date><risdate>2017</risdate><volume>5</volume><issue>5</issue><spage>2037</spage><epage>2044</epage><pages>2037-2044</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Binder-free and bifunctional electrocatalysts have vital roles in the development of high-performance metal-air batteries. Herein, we synthesized a vanadium oxide (VO2) nanostructure as a novel binder-free and bifunctional electrocatalyst for a rechargeable aqueous sodium-air (Na-air) battery. VO2 nanostructures were grown on reduced graphene oxide coated on carbon paper, which had a carambola morphology. We confirmed the bifunctional nature of VO2 nanostructures by analyzing their electrocatalytic activity associated with the oxygen reduction reaction and oxygen evolution reaction. The reaction pathway associated with electrocatalytic activity was also affirmed by computational modeling and simulation studies. Thereafter, an aqueous Na-air cell was built using novel binder-free VO2 nanostructures as the air electrode. The fabricated cell displayed a 0.64 V overpotential gap, 104 mW g-1 power density at 80 mA g-1 current density, 81% round trip efficiency and good cyclic stability up to 50 cycles.</abstract><doi>10.1039/c6ta09375b</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2017, Vol.5 (5), p.2037-2044
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_miscellaneous_1884127872
source Royal Society Of Chemistry Journals 2008-
subjects Carbon
Current density
Electrocatalysts
Electrodes
Graphene
Nanostructure
Oxygen
Vanadium oxides
title Carambola-shaped VO2 nanostructures: a binder-free air electrode for an aqueous Na-air battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T06%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carambola-shaped%20VO2%20nanostructures:%20a%20binder-free%20air%20electrode%20for%20an%20aqueous%20Na-air%20battery&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Khan,%20Ziyauddin&rft.date=2017&rft.volume=5&rft.issue=5&rft.spage=2037&rft.epage=2044&rft.pages=2037-2044&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c6ta09375b&rft_dat=%3Cproquest%3E1868330051%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1868330051&rft_id=info:pmid/&rfr_iscdi=true