Ethane C-H bond activation on the Fe(iv)-oxo species in a Zn-based cluster of metal-organic frameworks: a density functional theory study

We first investigate the feasibility of designing a Fe-oxo complex for the activation of alkane C-H bonds by (a) incorporating an Fe ion into a Zn-based cluster derived from a metal-organic framework (MOF) and (b) creating the Fe-oxo complex via decomposition of N O over a Fe -substituted Zn-based c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical chemistry chemical physics : PCCP 2017-02, Vol.19 (5), p.3782-3791
Hauptverfasser: Impeng, Sarawoot, Siwaipram, Siwarut, Bureekaew, Sareeya, Probst, Michael
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3791
container_issue 5
container_start_page 3782
container_title Physical chemistry chemical physics : PCCP
container_volume 19
creator Impeng, Sarawoot
Siwaipram, Siwarut
Bureekaew, Sareeya
Probst, Michael
description We first investigate the feasibility of designing a Fe-oxo complex for the activation of alkane C-H bonds by (a) incorporating an Fe ion into a Zn-based cluster derived from a metal-organic framework (MOF) and (b) creating the Fe-oxo complex via decomposition of N O over a Fe -substituted Zn-based cluster (Fe-Zn O(pyrazole) ). From the energy profile, it turns out that both steps should be feasible and that the resulting Fe-oxo complex is stable. In the main step, we then investigate the reactivity of this Fe-oxo cluster for the C-H bond cleavage of ethane by calculating the reaction energy profile and analyzing the electronic structure along the relevant steps. Two mechanisms, namely the σ and π pathways on the triplet and quintet potential energy surfaces, were unraveled for this study of catalytic activity. It is shown that the σ pathway on the quintet surface is kinetically and thermodynamically favorable with an energy barrier of 22.5 kcal mol . The π pathway on the quintet and triplet surfaces has activation energies of 26.9 kcal mol and 24.9 kcal mol , respectively. An alternative unusual pathway called the δ mechanism on the triplet surface is also observed with an energy barrier of 12.6 kcal mol . It is, however, thermodynamically at a disadvantage compared to the σ pathway on the quintet surface. Favorable d-d interaction on the Fe center and less steric hindrance from the equatorial ligands at the transition state are the key factors that cause the σ pathway on the quintet surface to have the lowest activation energy. All our calculations are of the cluster type and have been performed at the B3LYP-D3/def2-TZVP level of theory.
doi_str_mv 10.1039/c6cp07771d
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884127556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1861574997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-6f9dd5ee9d4e6038a12dfeeea1412727ede102dca1a064a3b2b04ba6fa10fb013</originalsourceid><addsrcrecordid>eNqNkc1O3TAQRq2qqPxu-gCVlxQpYMeJnXRXBS4gIdFF2bCJJva4uE3iW9sB7iPw1uRygTXSSN8sjo408xHylbNjzkR9oqVeMqUUN5_IDi-kyGpWFZ_fdyW3yW6MfxljvOTiC9nOK85yoYod8nSW7mBE2mQXtPOjoaCTu4fk_EjnSXdIF3jo7r9n_tHTuETtMFI3UqC3Y9ZBREN1P8WEgXpLB0zQZz78gdFpagMM-ODDv_hj5g2O0aUVtdOo137o13ofVjSmyaz2yZaFPuLBa-6Rm8XZ7-Yiu7o-v2x-XmValCpl0tbGlIi1KVAyUQHPjUVE4AXPVa7Q4Hyb0cCByQJEl3es6EBa4Mx2jIs9crjxLoP_P2FM7eCixr6f3-Cn2PKqWpvKUn4AlbxURV2rGT3aoDr4GAPadhncAGHVctauW2ob2fx6ael0hr-9eqduQPOOvtUingF-lY4_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1861574997</pqid></control><display><type>article</type><title>Ethane C-H bond activation on the Fe(iv)-oxo species in a Zn-based cluster of metal-organic frameworks: a density functional theory study</title><source>Royal Society Of Chemistry Journals 2008-</source><source>Alma/SFX Local Collection</source><creator>Impeng, Sarawoot ; Siwaipram, Siwarut ; Bureekaew, Sareeya ; Probst, Michael</creator><creatorcontrib>Impeng, Sarawoot ; Siwaipram, Siwarut ; Bureekaew, Sareeya ; Probst, Michael</creatorcontrib><description>We first investigate the feasibility of designing a Fe-oxo complex for the activation of alkane C-H bonds by (a) incorporating an Fe ion into a Zn-based cluster derived from a metal-organic framework (MOF) and (b) creating the Fe-oxo complex via decomposition of N O over a Fe -substituted Zn-based cluster (Fe-Zn O(pyrazole) ). From the energy profile, it turns out that both steps should be feasible and that the resulting Fe-oxo complex is stable. In the main step, we then investigate the reactivity of this Fe-oxo cluster for the C-H bond cleavage of ethane by calculating the reaction energy profile and analyzing the electronic structure along the relevant steps. Two mechanisms, namely the σ and π pathways on the triplet and quintet potential energy surfaces, were unraveled for this study of catalytic activity. It is shown that the σ pathway on the quintet surface is kinetically and thermodynamically favorable with an energy barrier of 22.5 kcal mol . The π pathway on the quintet and triplet surfaces has activation energies of 26.9 kcal mol and 24.9 kcal mol , respectively. An alternative unusual pathway called the δ mechanism on the triplet surface is also observed with an energy barrier of 12.6 kcal mol . It is, however, thermodynamically at a disadvantage compared to the σ pathway on the quintet surface. Favorable d-d interaction on the Fe center and less steric hindrance from the equatorial ligands at the transition state are the key factors that cause the σ pathway on the quintet surface to have the lowest activation energy. All our calculations are of the cluster type and have been performed at the B3LYP-D3/def2-TZVP level of theory.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c6cp07771d</identifier><identifier>PMID: 28102374</identifier><language>eng</language><publisher>England</publisher><subject>Activation ; Activation analysis ; Chemical bonds ; Clusters ; Mathematical analysis ; Metal-organic frameworks ; Pathways ; Surface chemistry</subject><ispartof>Physical chemistry chemical physics : PCCP, 2017-02, Vol.19 (5), p.3782-3791</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-6f9dd5ee9d4e6038a12dfeeea1412727ede102dca1a064a3b2b04ba6fa10fb013</citedby><cites>FETCH-LOGICAL-c357t-6f9dd5ee9d4e6038a12dfeeea1412727ede102dca1a064a3b2b04ba6fa10fb013</cites><orcidid>0000-0001-6693-1244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28102374$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Impeng, Sarawoot</creatorcontrib><creatorcontrib>Siwaipram, Siwarut</creatorcontrib><creatorcontrib>Bureekaew, Sareeya</creatorcontrib><creatorcontrib>Probst, Michael</creatorcontrib><title>Ethane C-H bond activation on the Fe(iv)-oxo species in a Zn-based cluster of metal-organic frameworks: a density functional theory study</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We first investigate the feasibility of designing a Fe-oxo complex for the activation of alkane C-H bonds by (a) incorporating an Fe ion into a Zn-based cluster derived from a metal-organic framework (MOF) and (b) creating the Fe-oxo complex via decomposition of N O over a Fe -substituted Zn-based cluster (Fe-Zn O(pyrazole) ). From the energy profile, it turns out that both steps should be feasible and that the resulting Fe-oxo complex is stable. In the main step, we then investigate the reactivity of this Fe-oxo cluster for the C-H bond cleavage of ethane by calculating the reaction energy profile and analyzing the electronic structure along the relevant steps. Two mechanisms, namely the σ and π pathways on the triplet and quintet potential energy surfaces, were unraveled for this study of catalytic activity. It is shown that the σ pathway on the quintet surface is kinetically and thermodynamically favorable with an energy barrier of 22.5 kcal mol . The π pathway on the quintet and triplet surfaces has activation energies of 26.9 kcal mol and 24.9 kcal mol , respectively. An alternative unusual pathway called the δ mechanism on the triplet surface is also observed with an energy barrier of 12.6 kcal mol . It is, however, thermodynamically at a disadvantage compared to the σ pathway on the quintet surface. Favorable d-d interaction on the Fe center and less steric hindrance from the equatorial ligands at the transition state are the key factors that cause the σ pathway on the quintet surface to have the lowest activation energy. All our calculations are of the cluster type and have been performed at the B3LYP-D3/def2-TZVP level of theory.</description><subject>Activation</subject><subject>Activation analysis</subject><subject>Chemical bonds</subject><subject>Clusters</subject><subject>Mathematical analysis</subject><subject>Metal-organic frameworks</subject><subject>Pathways</subject><subject>Surface chemistry</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkc1O3TAQRq2qqPxu-gCVlxQpYMeJnXRXBS4gIdFF2bCJJva4uE3iW9sB7iPw1uRygTXSSN8sjo408xHylbNjzkR9oqVeMqUUN5_IDi-kyGpWFZ_fdyW3yW6MfxljvOTiC9nOK85yoYod8nSW7mBE2mQXtPOjoaCTu4fk_EjnSXdIF3jo7r9n_tHTuETtMFI3UqC3Y9ZBREN1P8WEgXpLB0zQZz78gdFpagMM-ODDv_hj5g2O0aUVtdOo137o13ofVjSmyaz2yZaFPuLBa-6Rm8XZ7-Yiu7o-v2x-XmValCpl0tbGlIi1KVAyUQHPjUVE4AXPVa7Q4Hyb0cCByQJEl3es6EBa4Mx2jIs9crjxLoP_P2FM7eCixr6f3-Cn2PKqWpvKUn4AlbxURV2rGT3aoDr4GAPadhncAGHVctauW2ob2fx6ael0hr-9eqduQPOOvtUingF-lY4_</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Impeng, Sarawoot</creator><creator>Siwaipram, Siwarut</creator><creator>Bureekaew, Sareeya</creator><creator>Probst, Michael</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6693-1244</orcidid></search><sort><creationdate>20170201</creationdate><title>Ethane C-H bond activation on the Fe(iv)-oxo species in a Zn-based cluster of metal-organic frameworks: a density functional theory study</title><author>Impeng, Sarawoot ; Siwaipram, Siwarut ; Bureekaew, Sareeya ; Probst, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-6f9dd5ee9d4e6038a12dfeeea1412727ede102dca1a064a3b2b04ba6fa10fb013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Activation analysis</topic><topic>Chemical bonds</topic><topic>Clusters</topic><topic>Mathematical analysis</topic><topic>Metal-organic frameworks</topic><topic>Pathways</topic><topic>Surface chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Impeng, Sarawoot</creatorcontrib><creatorcontrib>Siwaipram, Siwarut</creatorcontrib><creatorcontrib>Bureekaew, Sareeya</creatorcontrib><creatorcontrib>Probst, Michael</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Impeng, Sarawoot</au><au>Siwaipram, Siwarut</au><au>Bureekaew, Sareeya</au><au>Probst, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ethane C-H bond activation on the Fe(iv)-oxo species in a Zn-based cluster of metal-organic frameworks: a density functional theory study</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>19</volume><issue>5</issue><spage>3782</spage><epage>3791</epage><pages>3782-3791</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We first investigate the feasibility of designing a Fe-oxo complex for the activation of alkane C-H bonds by (a) incorporating an Fe ion into a Zn-based cluster derived from a metal-organic framework (MOF) and (b) creating the Fe-oxo complex via decomposition of N O over a Fe -substituted Zn-based cluster (Fe-Zn O(pyrazole) ). From the energy profile, it turns out that both steps should be feasible and that the resulting Fe-oxo complex is stable. In the main step, we then investigate the reactivity of this Fe-oxo cluster for the C-H bond cleavage of ethane by calculating the reaction energy profile and analyzing the electronic structure along the relevant steps. Two mechanisms, namely the σ and π pathways on the triplet and quintet potential energy surfaces, were unraveled for this study of catalytic activity. It is shown that the σ pathway on the quintet surface is kinetically and thermodynamically favorable with an energy barrier of 22.5 kcal mol . The π pathway on the quintet and triplet surfaces has activation energies of 26.9 kcal mol and 24.9 kcal mol , respectively. An alternative unusual pathway called the δ mechanism on the triplet surface is also observed with an energy barrier of 12.6 kcal mol . It is, however, thermodynamically at a disadvantage compared to the σ pathway on the quintet surface. Favorable d-d interaction on the Fe center and less steric hindrance from the equatorial ligands at the transition state are the key factors that cause the σ pathway on the quintet surface to have the lowest activation energy. All our calculations are of the cluster type and have been performed at the B3LYP-D3/def2-TZVP level of theory.</abstract><cop>England</cop><pmid>28102374</pmid><doi>10.1039/c6cp07771d</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6693-1244</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2017-02, Vol.19 (5), p.3782-3791
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1884127556
source Royal Society Of Chemistry Journals 2008-; Alma/SFX Local Collection
subjects Activation
Activation analysis
Chemical bonds
Clusters
Mathematical analysis
Metal-organic frameworks
Pathways
Surface chemistry
title Ethane C-H bond activation on the Fe(iv)-oxo species in a Zn-based cluster of metal-organic frameworks: a density functional theory study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T00%3A28%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ethane%20C-H%20bond%20activation%20on%20the%20Fe(iv)-oxo%20species%20in%20a%20Zn-based%20cluster%20of%20metal-organic%20frameworks:%20a%20density%20functional%20theory%20study&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Impeng,%20Sarawoot&rft.date=2017-02-01&rft.volume=19&rft.issue=5&rft.spage=3782&rft.epage=3791&rft.pages=3782-3791&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c6cp07771d&rft_dat=%3Cproquest_cross%3E1861574997%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1861574997&rft_id=info:pmid/28102374&rfr_iscdi=true