Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm Validation against CloudSat
The operational VIIRS cloud-base height (CBH) product from the Suomi-National Polar-Orbiting Partnership (SNPP) satellite is compared against observations of CBH from the cloud profiling radar (CPR) on board CloudSat. Because of the orbits of SNPP and CloudSat, these instruments provide nearly simul...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2017-03, Vol.34 (3), p.567-583 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 583 |
---|---|
container_issue | 3 |
container_start_page | 567 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 34 |
creator | Seaman, Curtis J Noh, Yoo-Jeong Miller, Steven D Heidinger, Andrew K Lindsey, Daniel T |
description | The operational VIIRS cloud-base height (CBH) product from the Suomi-National Polar-Orbiting Partnership (SNPP) satellite is compared against observations of CBH from the cloud profiling radar (CPR) on board CloudSat. Because of the orbits of SNPP and CloudSat, these instruments provide nearly simultaneous observations of the same locations on Earth for a ~4.5-h period every 2-3 days. The methodology by which VIIRS and CloudSat observations are spatially and temporally matched is outlined. Based on four 1-month evaluation periods representing each season from June 2014 to April 2015, statistics related to the VIIRS CBH retrieval performance have been collected. Results indicate that when compared against CloudSat, the VIIRS CBH retrieval does not meet the error specifications set by the Joint Polar Satellite System (JPSS) program, with a root-mean-square error (RMSE) of 3.7 km for all clouds globally. More than half of all matching VIIRS pixels and CloudSat profiles have CBH errors exceeding the 2-km error requirement. Underscoring the significance of these statistics, it is shown that a simple estimate based on a constant cloud geometric thickness of 2 km outperforms the current operational CBH algorithm. It was found that the performance of the CBH product is impacted by the accuracy of upstream retrievals [primarily cloud-top height (CTH)] and the a priori information used by the CBH retrieval algorithm. However, even when CTH errors were small, CBH errors still exceed the JPSS program error specifications with an RMSE of 2.3 km. |
doi_str_mv | 10.1175/JTECH-D-16-0109.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884127406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2042209980</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-e26365509f20c3c999e4798a0a532b19aa94913bf3cd8e30bbaad5850859b2843</originalsourceid><addsrcrecordid>eNqNkUFPAjEQhRujiYj-AG9NvHhZnGm3u603BBQMCUbQa9NdurBkYbHtHvz3LuDJk6c5zPdeZt4j5Bahh5iKh9fFaDCOhhEmESCoHp6RDgoGEcQsOScdSLmKQKTsklx5vwEA5Jh0SDao6mYZPRlv6diWq3WgIx_KrQllvaOFq7f0czJ5n_fom3GBTh7pbG_dcWsq2q9WtSvDuoVMVS5PIrMy5c4HenSem3BNLgpTeXvzO7vk43m0aK-dzl4mg_40yjlXIbIs4YkQoAoGOc-VUjZOlTRgBGcZKmNUrJBnBc-X0nLIMmOWQgqQQmVMxrxL7k--e1d_NdYHvS19bqvK7GzdeI1SxsjSGJJ_oGkqYwaMt-jdH3RTN6593mvWZstAKQkthScqd7X3zhZ679oQ3bdG0IeC9LEgPdSY6ENBGvkPWveBbA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2042209980</pqid></control><display><type>article</type><title>Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm Validation against CloudSat</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Seaman, Curtis J ; Noh, Yoo-Jeong ; Miller, Steven D ; Heidinger, Andrew K ; Lindsey, Daniel T</creator><creatorcontrib>Seaman, Curtis J ; Noh, Yoo-Jeong ; Miller, Steven D ; Heidinger, Andrew K ; Lindsey, Daniel T</creatorcontrib><description>The operational VIIRS cloud-base height (CBH) product from the Suomi-National Polar-Orbiting Partnership (SNPP) satellite is compared against observations of CBH from the cloud profiling radar (CPR) on board CloudSat. Because of the orbits of SNPP and CloudSat, these instruments provide nearly simultaneous observations of the same locations on Earth for a ~4.5-h period every 2-3 days. The methodology by which VIIRS and CloudSat observations are spatially and temporally matched is outlined. Based on four 1-month evaluation periods representing each season from June 2014 to April 2015, statistics related to the VIIRS CBH retrieval performance have been collected. Results indicate that when compared against CloudSat, the VIIRS CBH retrieval does not meet the error specifications set by the Joint Polar Satellite System (JPSS) program, with a root-mean-square error (RMSE) of 3.7 km for all clouds globally. More than half of all matching VIIRS pixels and CloudSat profiles have CBH errors exceeding the 2-km error requirement. Underscoring the significance of these statistics, it is shown that a simple estimate based on a constant cloud geometric thickness of 2 km outperforms the current operational CBH algorithm. It was found that the performance of the CBH product is impacted by the accuracy of upstream retrievals [primarily cloud-top height (CTH)] and the a priori information used by the CBH retrieval algorithm. However, even when CTH errors were small, CBH errors still exceed the JPSS program error specifications with an RMSE of 2.3 km.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-16-0109.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Algorithms ; Atmosphere ; Aviation ; Clouds ; Data processing ; Earth ; Errors ; Evaluation ; Height ; Instruments ; Marine ; Mathematical models ; Meteorological satellites ; Profiles ; Radar ; Retrieval ; Root-mean-square errors ; Satellite observation ; Satellites ; Specifications ; Statistical methods ; Statistics</subject><ispartof>Journal of atmospheric and oceanic technology, 2017-03, Vol.34 (3), p.567-583</ispartof><rights>Copyright American Meteorological Society Mar 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-e26365509f20c3c999e4798a0a532b19aa94913bf3cd8e30bbaad5850859b2843</citedby><cites>FETCH-LOGICAL-c339t-e26365509f20c3c999e4798a0a532b19aa94913bf3cd8e30bbaad5850859b2843</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Seaman, Curtis J</creatorcontrib><creatorcontrib>Noh, Yoo-Jeong</creatorcontrib><creatorcontrib>Miller, Steven D</creatorcontrib><creatorcontrib>Heidinger, Andrew K</creatorcontrib><creatorcontrib>Lindsey, Daniel T</creatorcontrib><title>Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm Validation against CloudSat</title><title>Journal of atmospheric and oceanic technology</title><description>The operational VIIRS cloud-base height (CBH) product from the Suomi-National Polar-Orbiting Partnership (SNPP) satellite is compared against observations of CBH from the cloud profiling radar (CPR) on board CloudSat. Because of the orbits of SNPP and CloudSat, these instruments provide nearly simultaneous observations of the same locations on Earth for a ~4.5-h period every 2-3 days. The methodology by which VIIRS and CloudSat observations are spatially and temporally matched is outlined. Based on four 1-month evaluation periods representing each season from June 2014 to April 2015, statistics related to the VIIRS CBH retrieval performance have been collected. Results indicate that when compared against CloudSat, the VIIRS CBH retrieval does not meet the error specifications set by the Joint Polar Satellite System (JPSS) program, with a root-mean-square error (RMSE) of 3.7 km for all clouds globally. More than half of all matching VIIRS pixels and CloudSat profiles have CBH errors exceeding the 2-km error requirement. Underscoring the significance of these statistics, it is shown that a simple estimate based on a constant cloud geometric thickness of 2 km outperforms the current operational CBH algorithm. It was found that the performance of the CBH product is impacted by the accuracy of upstream retrievals [primarily cloud-top height (CTH)] and the a priori information used by the CBH retrieval algorithm. However, even when CTH errors were small, CBH errors still exceed the JPSS program error specifications with an RMSE of 2.3 km.</description><subject>Algorithms</subject><subject>Atmosphere</subject><subject>Aviation</subject><subject>Clouds</subject><subject>Data processing</subject><subject>Earth</subject><subject>Errors</subject><subject>Evaluation</subject><subject>Height</subject><subject>Instruments</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Profiles</subject><subject>Radar</subject><subject>Retrieval</subject><subject>Root-mean-square errors</subject><subject>Satellite observation</subject><subject>Satellites</subject><subject>Specifications</subject><subject>Statistical methods</subject><subject>Statistics</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkUFPAjEQhRujiYj-AG9NvHhZnGm3u603BBQMCUbQa9NdurBkYbHtHvz3LuDJk6c5zPdeZt4j5Bahh5iKh9fFaDCOhhEmESCoHp6RDgoGEcQsOScdSLmKQKTsklx5vwEA5Jh0SDao6mYZPRlv6diWq3WgIx_KrQllvaOFq7f0czJ5n_fom3GBTh7pbG_dcWsq2q9WtSvDuoVMVS5PIrMy5c4HenSem3BNLgpTeXvzO7vk43m0aK-dzl4mg_40yjlXIbIs4YkQoAoGOc-VUjZOlTRgBGcZKmNUrJBnBc-X0nLIMmOWQgqQQmVMxrxL7k--e1d_NdYHvS19bqvK7GzdeI1SxsjSGJJ_oGkqYwaMt-jdH3RTN6593mvWZstAKQkthScqd7X3zhZ679oQ3bdG0IeC9LEgPdSY6ENBGvkPWveBbA</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Seaman, Curtis J</creator><creator>Noh, Yoo-Jeong</creator><creator>Miller, Steven D</creator><creator>Heidinger, Andrew K</creator><creator>Lindsey, Daniel T</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170301</creationdate><title>Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm Validation against CloudSat</title><author>Seaman, Curtis J ; Noh, Yoo-Jeong ; Miller, Steven D ; Heidinger, Andrew K ; Lindsey, Daniel T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-e26365509f20c3c999e4798a0a532b19aa94913bf3cd8e30bbaad5850859b2843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Algorithms</topic><topic>Atmosphere</topic><topic>Aviation</topic><topic>Clouds</topic><topic>Data processing</topic><topic>Earth</topic><topic>Errors</topic><topic>Evaluation</topic><topic>Height</topic><topic>Instruments</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Profiles</topic><topic>Radar</topic><topic>Retrieval</topic><topic>Root-mean-square errors</topic><topic>Satellite observation</topic><topic>Satellites</topic><topic>Specifications</topic><topic>Statistical methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seaman, Curtis J</creatorcontrib><creatorcontrib>Noh, Yoo-Jeong</creatorcontrib><creatorcontrib>Miller, Steven D</creatorcontrib><creatorcontrib>Heidinger, Andrew K</creatorcontrib><creatorcontrib>Lindsey, Daniel T</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seaman, Curtis J</au><au>Noh, Yoo-Jeong</au><au>Miller, Steven D</au><au>Heidinger, Andrew K</au><au>Lindsey, Daniel T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm Validation against CloudSat</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>34</volume><issue>3</issue><spage>567</spage><epage>583</epage><pages>567-583</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>The operational VIIRS cloud-base height (CBH) product from the Suomi-National Polar-Orbiting Partnership (SNPP) satellite is compared against observations of CBH from the cloud profiling radar (CPR) on board CloudSat. Because of the orbits of SNPP and CloudSat, these instruments provide nearly simultaneous observations of the same locations on Earth for a ~4.5-h period every 2-3 days. The methodology by which VIIRS and CloudSat observations are spatially and temporally matched is outlined. Based on four 1-month evaluation periods representing each season from June 2014 to April 2015, statistics related to the VIIRS CBH retrieval performance have been collected. Results indicate that when compared against CloudSat, the VIIRS CBH retrieval does not meet the error specifications set by the Joint Polar Satellite System (JPSS) program, with a root-mean-square error (RMSE) of 3.7 km for all clouds globally. More than half of all matching VIIRS pixels and CloudSat profiles have CBH errors exceeding the 2-km error requirement. Underscoring the significance of these statistics, it is shown that a simple estimate based on a constant cloud geometric thickness of 2 km outperforms the current operational CBH algorithm. It was found that the performance of the CBH product is impacted by the accuracy of upstream retrievals [primarily cloud-top height (CTH)] and the a priori information used by the CBH retrieval algorithm. However, even when CTH errors were small, CBH errors still exceed the JPSS program error specifications with an RMSE of 2.3 km.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-16-0109.1</doi><tpages>17</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2017-03, Vol.34 (3), p.567-583 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884127406 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Algorithms Atmosphere Aviation Clouds Data processing Earth Errors Evaluation Height Instruments Marine Mathematical models Meteorological satellites Profiles Radar Retrieval Root-mean-square errors Satellite observation Satellites Specifications Statistical methods Statistics |
title | Cloud-Base Height Estimation from VIIRS. Part I: Operational Algorithm Validation against CloudSat |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T23%3A04%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloud-Base%20Height%20Estimation%20from%20VIIRS.%20Part%20I:%20Operational%20Algorithm%20Validation%20against%20CloudSat&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Seaman,%20Curtis%20J&rft.date=2017-03-01&rft.volume=34&rft.issue=3&rft.spage=567&rft.epage=583&rft.pages=567-583&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-16-0109.1&rft_dat=%3Cproquest_cross%3E2042209980%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2042209980&rft_id=info:pmid/&rfr_iscdi=true |