Porphyrinoids for Chemical Sensor Applications
Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows ap...
Gespeichert in:
Veröffentlicht in: | Chemical reviews 2017-02, Vol.117 (4), p.2517-2583 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2583 |
---|---|
container_issue | 4 |
container_start_page | 2517 |
container_title | Chemical reviews |
container_volume | 117 |
creator | Paolesse, Roberto Nardis, Sara Monti, Donato Stefanelli, Manuela Di Natale, Corrado |
description | Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows applying porphyrin derivatives to different transducers, ranging from nanogravimetric to optical devices, also enabling the realization of multifunctional chemical sensors, in which multiple transduction mechanisms are applied to the same sensing layer. Potential applications are further expanded through sensor arrays, where cross-selective sensing layers can be applied for the analysis of complex chemical matrices. The possibility of finely tuning the macrocycle properties by synthetic modification of the different components of the porphyrin ring, such as peripheral substituents, molecular skeleton, coordinated metal, allows creating a vast library of porphyrinoid-based sensing layers. From among these, one can select optimal arrays for a particular application. This feature is particularly suitable for sensor array applications, where cross-selective receptors are required. This Review briefly describes chemical sensor principles. The main part of the Review is divided into two sections, describing the porphyrin-based devices devoted to the detection of gaseous or liquid samples, according to the corresponding transduction mechanism. Although most devices are based on porphyrin derivatives, seminal examples of the application of corroles or other porphyrin analogues are evidenced in dedicated sections. |
doi_str_mv | 10.1021/acs.chemrev.6b00361 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884126865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1870986296</sourcerecordid><originalsourceid>FETCH-LOGICAL-a517t-c3a95de5918c081128b00f982370379efd7a25d482df54d81cdf8e8ced8ed2ea3</originalsourceid><addsrcrecordid>eNqNkF9LwzAUxYMobk4_gSADX3xpl9w2afI4hv9goKA-hyxJWUfb1GQV9u3NWFXwQXy54cDvnHtzELokOCUYyEzpkOq1bbz9SNkK44yRIzQmFHDCuMDHaIwxFgkwRkfoLIRNlJRCcYpGwAGA4XyM0mfnu_XOV62rTJiWzk8XMbPSqp6-2DZEPe-6Oupt5dpwjk5KVQd7MbwT9HZ3-7p4SJZP94-L-TJRlBTbRGdKUGOpIFxjTgjweF8pOGQFzgphS1MooCbnYEqaG060Kbnl2hpuDViVTdDNIbfz7r23YSubKmhb16q1rg-ScJ4TYJzRf6AFFpyBYBG9_oVuXO_b-JE9BSSOnEQqO1DauxC8LWXnq0b5nSRY7puXsXk5NC-H5qPrasjuV401356vqiMwOwB798_ePyI_AepDkCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872118741</pqid></control><display><type>article</type><title>Porphyrinoids for Chemical Sensor Applications</title><source>MEDLINE</source><source>ACS Publications</source><creator>Paolesse, Roberto ; Nardis, Sara ; Monti, Donato ; Stefanelli, Manuela ; Di Natale, Corrado</creator><creatorcontrib>Paolesse, Roberto ; Nardis, Sara ; Monti, Donato ; Stefanelli, Manuela ; Di Natale, Corrado</creatorcontrib><description>Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows applying porphyrin derivatives to different transducers, ranging from nanogravimetric to optical devices, also enabling the realization of multifunctional chemical sensors, in which multiple transduction mechanisms are applied to the same sensing layer. Potential applications are further expanded through sensor arrays, where cross-selective sensing layers can be applied for the analysis of complex chemical matrices. The possibility of finely tuning the macrocycle properties by synthetic modification of the different components of the porphyrin ring, such as peripheral substituents, molecular skeleton, coordinated metal, allows creating a vast library of porphyrinoid-based sensing layers. From among these, one can select optimal arrays for a particular application. This feature is particularly suitable for sensor array applications, where cross-selective receptors are required. This Review briefly describes chemical sensor principles. The main part of the Review is divided into two sections, describing the porphyrin-based devices devoted to the detection of gaseous or liquid samples, according to the corresponding transduction mechanism. Although most devices are based on porphyrin derivatives, seminal examples of the application of corroles or other porphyrin analogues are evidenced in dedicated sections.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.6b00361</identifier><identifier>PMID: 28222604</identifier><identifier>CODEN: CHREAY</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Activation ; Arrays ; Chemical sensors ; Chemistry ; Derivatives ; Detection ; Devices ; Dopamine - analysis ; Electrodes ; Gases ; Hydrogen Peroxide - analysis ; Nanotubes - chemistry ; Neurotransmitter Agents - analysis ; Nitric Oxide - analysis ; Porphyrins ; Porphyrins - chemistry ; Potentiometry ; Sensor arrays ; Sensors ; Signal transduction ; Spectrum Analysis - methods ; Transducers</subject><ispartof>Chemical reviews, 2017-02, Vol.117 (4), p.2517-2583</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 22, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a517t-c3a95de5918c081128b00f982370379efd7a25d482df54d81cdf8e8ced8ed2ea3</citedby><cites>FETCH-LOGICAL-a517t-c3a95de5918c081128b00f982370379efd7a25d482df54d81cdf8e8ced8ed2ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.6b00361$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.6b00361$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28222604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paolesse, Roberto</creatorcontrib><creatorcontrib>Nardis, Sara</creatorcontrib><creatorcontrib>Monti, Donato</creatorcontrib><creatorcontrib>Stefanelli, Manuela</creatorcontrib><creatorcontrib>Di Natale, Corrado</creatorcontrib><title>Porphyrinoids for Chemical Sensor Applications</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows applying porphyrin derivatives to different transducers, ranging from nanogravimetric to optical devices, also enabling the realization of multifunctional chemical sensors, in which multiple transduction mechanisms are applied to the same sensing layer. Potential applications are further expanded through sensor arrays, where cross-selective sensing layers can be applied for the analysis of complex chemical matrices. The possibility of finely tuning the macrocycle properties by synthetic modification of the different components of the porphyrin ring, such as peripheral substituents, molecular skeleton, coordinated metal, allows creating a vast library of porphyrinoid-based sensing layers. From among these, one can select optimal arrays for a particular application. This feature is particularly suitable for sensor array applications, where cross-selective receptors are required. This Review briefly describes chemical sensor principles. The main part of the Review is divided into two sections, describing the porphyrin-based devices devoted to the detection of gaseous or liquid samples, according to the corresponding transduction mechanism. Although most devices are based on porphyrin derivatives, seminal examples of the application of corroles or other porphyrin analogues are evidenced in dedicated sections.</description><subject>Activation</subject><subject>Arrays</subject><subject>Chemical sensors</subject><subject>Chemistry</subject><subject>Derivatives</subject><subject>Detection</subject><subject>Devices</subject><subject>Dopamine - analysis</subject><subject>Electrodes</subject><subject>Gases</subject><subject>Hydrogen Peroxide - analysis</subject><subject>Nanotubes - chemistry</subject><subject>Neurotransmitter Agents - analysis</subject><subject>Nitric Oxide - analysis</subject><subject>Porphyrins</subject><subject>Porphyrins - chemistry</subject><subject>Potentiometry</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>Spectrum Analysis - methods</subject><subject>Transducers</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkF9LwzAUxYMobk4_gSADX3xpl9w2afI4hv9goKA-hyxJWUfb1GQV9u3NWFXwQXy54cDvnHtzELokOCUYyEzpkOq1bbz9SNkK44yRIzQmFHDCuMDHaIwxFgkwRkfoLIRNlJRCcYpGwAGA4XyM0mfnu_XOV62rTJiWzk8XMbPSqp6-2DZEPe-6Oupt5dpwjk5KVQd7MbwT9HZ3-7p4SJZP94-L-TJRlBTbRGdKUGOpIFxjTgjweF8pOGQFzgphS1MooCbnYEqaG060Kbnl2hpuDViVTdDNIbfz7r23YSubKmhb16q1rg-ScJ4TYJzRf6AFFpyBYBG9_oVuXO_b-JE9BSSOnEQqO1DauxC8LWXnq0b5nSRY7puXsXk5NC-H5qPrasjuV401356vqiMwOwB798_ePyI_AepDkCQ</recordid><startdate>20170222</startdate><enddate>20170222</enddate><creator>Paolesse, Roberto</creator><creator>Nardis, Sara</creator><creator>Monti, Donato</creator><creator>Stefanelli, Manuela</creator><creator>Di Natale, Corrado</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20170222</creationdate><title>Porphyrinoids for Chemical Sensor Applications</title><author>Paolesse, Roberto ; Nardis, Sara ; Monti, Donato ; Stefanelli, Manuela ; Di Natale, Corrado</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a517t-c3a95de5918c081128b00f982370379efd7a25d482df54d81cdf8e8ced8ed2ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Arrays</topic><topic>Chemical sensors</topic><topic>Chemistry</topic><topic>Derivatives</topic><topic>Detection</topic><topic>Devices</topic><topic>Dopamine - analysis</topic><topic>Electrodes</topic><topic>Gases</topic><topic>Hydrogen Peroxide - analysis</topic><topic>Nanotubes - chemistry</topic><topic>Neurotransmitter Agents - analysis</topic><topic>Nitric Oxide - analysis</topic><topic>Porphyrins</topic><topic>Porphyrins - chemistry</topic><topic>Potentiometry</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>Spectrum Analysis - methods</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paolesse, Roberto</creatorcontrib><creatorcontrib>Nardis, Sara</creatorcontrib><creatorcontrib>Monti, Donato</creatorcontrib><creatorcontrib>Stefanelli, Manuela</creatorcontrib><creatorcontrib>Di Natale, Corrado</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paolesse, Roberto</au><au>Nardis, Sara</au><au>Monti, Donato</au><au>Stefanelli, Manuela</au><au>Di Natale, Corrado</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porphyrinoids for Chemical Sensor Applications</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2017-02-22</date><risdate>2017</risdate><volume>117</volume><issue>4</issue><spage>2517</spage><epage>2583</epage><pages>2517-2583</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><coden>CHREAY</coden><abstract>Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows applying porphyrin derivatives to different transducers, ranging from nanogravimetric to optical devices, also enabling the realization of multifunctional chemical sensors, in which multiple transduction mechanisms are applied to the same sensing layer. Potential applications are further expanded through sensor arrays, where cross-selective sensing layers can be applied for the analysis of complex chemical matrices. The possibility of finely tuning the macrocycle properties by synthetic modification of the different components of the porphyrin ring, such as peripheral substituents, molecular skeleton, coordinated metal, allows creating a vast library of porphyrinoid-based sensing layers. From among these, one can select optimal arrays for a particular application. This feature is particularly suitable for sensor array applications, where cross-selective receptors are required. This Review briefly describes chemical sensor principles. The main part of the Review is divided into two sections, describing the porphyrin-based devices devoted to the detection of gaseous or liquid samples, according to the corresponding transduction mechanism. Although most devices are based on porphyrin derivatives, seminal examples of the application of corroles or other porphyrin analogues are evidenced in dedicated sections.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28222604</pmid><doi>10.1021/acs.chemrev.6b00361</doi><tpages>67</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0009-2665 |
ispartof | Chemical reviews, 2017-02, Vol.117 (4), p.2517-2583 |
issn | 0009-2665 1520-6890 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884126865 |
source | MEDLINE; ACS Publications |
subjects | Activation Arrays Chemical sensors Chemistry Derivatives Detection Devices Dopamine - analysis Electrodes Gases Hydrogen Peroxide - analysis Nanotubes - chemistry Neurotransmitter Agents - analysis Nitric Oxide - analysis Porphyrins Porphyrins - chemistry Potentiometry Sensor arrays Sensors Signal transduction Spectrum Analysis - methods Transducers |
title | Porphyrinoids for Chemical Sensor Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porphyrinoids%20for%20Chemical%20Sensor%20Applications&rft.jtitle=Chemical%20reviews&rft.au=Paolesse,%20Roberto&rft.date=2017-02-22&rft.volume=117&rft.issue=4&rft.spage=2517&rft.epage=2583&rft.pages=2517-2583&rft.issn=0009-2665&rft.eissn=1520-6890&rft.coden=CHREAY&rft_id=info:doi/10.1021/acs.chemrev.6b00361&rft_dat=%3Cproquest_cross%3E1870986296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872118741&rft_id=info:pmid/28222604&rfr_iscdi=true |