Porphyrinoids for Chemical Sensor Applications

Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows ap...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemical reviews 2017-02, Vol.117 (4), p.2517-2583
Hauptverfasser: Paolesse, Roberto, Nardis, Sara, Monti, Donato, Stefanelli, Manuela, Di Natale, Corrado
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2583
container_issue 4
container_start_page 2517
container_title Chemical reviews
container_volume 117
creator Paolesse, Roberto
Nardis, Sara
Monti, Donato
Stefanelli, Manuela
Di Natale, Corrado
description Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows applying porphyrin derivatives to different transducers, ranging from nanogravimetric to optical devices, also enabling the realization of multifunctional chemical sensors, in which multiple transduction mechanisms are applied to the same sensing layer. Potential applications are further expanded through sensor arrays, where cross-selective sensing layers can be applied for the analysis of complex chemical matrices. The possibility of finely tuning the macrocycle properties by synthetic modification of the different components of the porphyrin ring, such as peripheral substituents, molecular skeleton, coordinated metal, allows creating a vast library of porphyrinoid-based sensing layers. From among these, one can select optimal arrays for a particular application. This feature is particularly suitable for sensor array applications, where cross-selective receptors are required. This Review briefly describes chemical sensor principles. The main part of the Review is divided into two sections, describing the porphyrin-based devices devoted to the detection of gaseous or liquid samples, according to the corresponding transduction mechanism. Although most devices are based on porphyrin derivatives, seminal examples of the application of corroles or other porphyrin analogues are evidenced in dedicated sections.
doi_str_mv 10.1021/acs.chemrev.6b00361
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884126865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1870986296</sourcerecordid><originalsourceid>FETCH-LOGICAL-a517t-c3a95de5918c081128b00f982370379efd7a25d482df54d81cdf8e8ced8ed2ea3</originalsourceid><addsrcrecordid>eNqNkF9LwzAUxYMobk4_gSADX3xpl9w2afI4hv9goKA-hyxJWUfb1GQV9u3NWFXwQXy54cDvnHtzELokOCUYyEzpkOq1bbz9SNkK44yRIzQmFHDCuMDHaIwxFgkwRkfoLIRNlJRCcYpGwAGA4XyM0mfnu_XOV62rTJiWzk8XMbPSqp6-2DZEPe-6Oupt5dpwjk5KVQd7MbwT9HZ3-7p4SJZP94-L-TJRlBTbRGdKUGOpIFxjTgjweF8pOGQFzgphS1MooCbnYEqaG060Kbnl2hpuDViVTdDNIbfz7r23YSubKmhb16q1rg-ScJ4TYJzRf6AFFpyBYBG9_oVuXO_b-JE9BSSOnEQqO1DauxC8LWXnq0b5nSRY7puXsXk5NC-H5qPrasjuV401356vqiMwOwB798_ePyI_AepDkCQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1872118741</pqid></control><display><type>article</type><title>Porphyrinoids for Chemical Sensor Applications</title><source>MEDLINE</source><source>ACS Publications</source><creator>Paolesse, Roberto ; Nardis, Sara ; Monti, Donato ; Stefanelli, Manuela ; Di Natale, Corrado</creator><creatorcontrib>Paolesse, Roberto ; Nardis, Sara ; Monti, Donato ; Stefanelli, Manuela ; Di Natale, Corrado</creatorcontrib><description>Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows applying porphyrin derivatives to different transducers, ranging from nanogravimetric to optical devices, also enabling the realization of multifunctional chemical sensors, in which multiple transduction mechanisms are applied to the same sensing layer. Potential applications are further expanded through sensor arrays, where cross-selective sensing layers can be applied for the analysis of complex chemical matrices. The possibility of finely tuning the macrocycle properties by synthetic modification of the different components of the porphyrin ring, such as peripheral substituents, molecular skeleton, coordinated metal, allows creating a vast library of porphyrinoid-based sensing layers. From among these, one can select optimal arrays for a particular application. This feature is particularly suitable for sensor array applications, where cross-selective receptors are required. This Review briefly describes chemical sensor principles. The main part of the Review is divided into two sections, describing the porphyrin-based devices devoted to the detection of gaseous or liquid samples, according to the corresponding transduction mechanism. Although most devices are based on porphyrin derivatives, seminal examples of the application of corroles or other porphyrin analogues are evidenced in dedicated sections.</description><identifier>ISSN: 0009-2665</identifier><identifier>EISSN: 1520-6890</identifier><identifier>DOI: 10.1021/acs.chemrev.6b00361</identifier><identifier>PMID: 28222604</identifier><identifier>CODEN: CHREAY</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Activation ; Arrays ; Chemical sensors ; Chemistry ; Derivatives ; Detection ; Devices ; Dopamine - analysis ; Electrodes ; Gases ; Hydrogen Peroxide - analysis ; Nanotubes - chemistry ; Neurotransmitter Agents - analysis ; Nitric Oxide - analysis ; Porphyrins ; Porphyrins - chemistry ; Potentiometry ; Sensor arrays ; Sensors ; Signal transduction ; Spectrum Analysis - methods ; Transducers</subject><ispartof>Chemical reviews, 2017-02, Vol.117 (4), p.2517-2583</ispartof><rights>Copyright © 2016 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 22, 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a517t-c3a95de5918c081128b00f982370379efd7a25d482df54d81cdf8e8ced8ed2ea3</citedby><cites>FETCH-LOGICAL-a517t-c3a95de5918c081128b00f982370379efd7a25d482df54d81cdf8e8ced8ed2ea3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.chemrev.6b00361$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.chemrev.6b00361$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,778,782,2754,27063,27911,27912,56725,56775</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/28222604$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Paolesse, Roberto</creatorcontrib><creatorcontrib>Nardis, Sara</creatorcontrib><creatorcontrib>Monti, Donato</creatorcontrib><creatorcontrib>Stefanelli, Manuela</creatorcontrib><creatorcontrib>Di Natale, Corrado</creatorcontrib><title>Porphyrinoids for Chemical Sensor Applications</title><title>Chemical reviews</title><addtitle>Chem. Rev</addtitle><description>Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows applying porphyrin derivatives to different transducers, ranging from nanogravimetric to optical devices, also enabling the realization of multifunctional chemical sensors, in which multiple transduction mechanisms are applied to the same sensing layer. Potential applications are further expanded through sensor arrays, where cross-selective sensing layers can be applied for the analysis of complex chemical matrices. The possibility of finely tuning the macrocycle properties by synthetic modification of the different components of the porphyrin ring, such as peripheral substituents, molecular skeleton, coordinated metal, allows creating a vast library of porphyrinoid-based sensing layers. From among these, one can select optimal arrays for a particular application. This feature is particularly suitable for sensor array applications, where cross-selective receptors are required. This Review briefly describes chemical sensor principles. The main part of the Review is divided into two sections, describing the porphyrin-based devices devoted to the detection of gaseous or liquid samples, according to the corresponding transduction mechanism. Although most devices are based on porphyrin derivatives, seminal examples of the application of corroles or other porphyrin analogues are evidenced in dedicated sections.</description><subject>Activation</subject><subject>Arrays</subject><subject>Chemical sensors</subject><subject>Chemistry</subject><subject>Derivatives</subject><subject>Detection</subject><subject>Devices</subject><subject>Dopamine - analysis</subject><subject>Electrodes</subject><subject>Gases</subject><subject>Hydrogen Peroxide - analysis</subject><subject>Nanotubes - chemistry</subject><subject>Neurotransmitter Agents - analysis</subject><subject>Nitric Oxide - analysis</subject><subject>Porphyrins</subject><subject>Porphyrins - chemistry</subject><subject>Potentiometry</subject><subject>Sensor arrays</subject><subject>Sensors</subject><subject>Signal transduction</subject><subject>Spectrum Analysis - methods</subject><subject>Transducers</subject><issn>0009-2665</issn><issn>1520-6890</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqNkF9LwzAUxYMobk4_gSADX3xpl9w2afI4hv9goKA-hyxJWUfb1GQV9u3NWFXwQXy54cDvnHtzELokOCUYyEzpkOq1bbz9SNkK44yRIzQmFHDCuMDHaIwxFgkwRkfoLIRNlJRCcYpGwAGA4XyM0mfnu_XOV62rTJiWzk8XMbPSqp6-2DZEPe-6Oupt5dpwjk5KVQd7MbwT9HZ3-7p4SJZP94-L-TJRlBTbRGdKUGOpIFxjTgjweF8pOGQFzgphS1MooCbnYEqaG060Kbnl2hpuDViVTdDNIbfz7r23YSubKmhb16q1rg-ScJ4TYJzRf6AFFpyBYBG9_oVuXO_b-JE9BSSOnEQqO1DauxC8LWXnq0b5nSRY7puXsXk5NC-H5qPrasjuV401356vqiMwOwB798_ePyI_AepDkCQ</recordid><startdate>20170222</startdate><enddate>20170222</enddate><creator>Paolesse, Roberto</creator><creator>Nardis, Sara</creator><creator>Monti, Donato</creator><creator>Stefanelli, Manuela</creator><creator>Di Natale, Corrado</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20170222</creationdate><title>Porphyrinoids for Chemical Sensor Applications</title><author>Paolesse, Roberto ; Nardis, Sara ; Monti, Donato ; Stefanelli, Manuela ; Di Natale, Corrado</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a517t-c3a95de5918c081128b00f982370379efd7a25d482df54d81cdf8e8ced8ed2ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation</topic><topic>Arrays</topic><topic>Chemical sensors</topic><topic>Chemistry</topic><topic>Derivatives</topic><topic>Detection</topic><topic>Devices</topic><topic>Dopamine - analysis</topic><topic>Electrodes</topic><topic>Gases</topic><topic>Hydrogen Peroxide - analysis</topic><topic>Nanotubes - chemistry</topic><topic>Neurotransmitter Agents - analysis</topic><topic>Nitric Oxide - analysis</topic><topic>Porphyrins</topic><topic>Porphyrins - chemistry</topic><topic>Potentiometry</topic><topic>Sensor arrays</topic><topic>Sensors</topic><topic>Signal transduction</topic><topic>Spectrum Analysis - methods</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paolesse, Roberto</creatorcontrib><creatorcontrib>Nardis, Sara</creatorcontrib><creatorcontrib>Monti, Donato</creatorcontrib><creatorcontrib>Stefanelli, Manuela</creatorcontrib><creatorcontrib>Di Natale, Corrado</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Chemical reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paolesse, Roberto</au><au>Nardis, Sara</au><au>Monti, Donato</au><au>Stefanelli, Manuela</au><au>Di Natale, Corrado</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Porphyrinoids for Chemical Sensor Applications</atitle><jtitle>Chemical reviews</jtitle><addtitle>Chem. Rev</addtitle><date>2017-02-22</date><risdate>2017</risdate><volume>117</volume><issue>4</issue><spage>2517</spage><epage>2583</epage><pages>2517-2583</pages><issn>0009-2665</issn><eissn>1520-6890</eissn><coden>CHREAY</coden><abstract>Porphyrins and related macrocycles have been intensively exploited as sensing materials in chemical sensors, since in these devices they mimic most of their biological functions, such as reversible binding, catalytic activation, and optical changes. Such a magnificent bouquet of properties allows applying porphyrin derivatives to different transducers, ranging from nanogravimetric to optical devices, also enabling the realization of multifunctional chemical sensors, in which multiple transduction mechanisms are applied to the same sensing layer. Potential applications are further expanded through sensor arrays, where cross-selective sensing layers can be applied for the analysis of complex chemical matrices. The possibility of finely tuning the macrocycle properties by synthetic modification of the different components of the porphyrin ring, such as peripheral substituents, molecular skeleton, coordinated metal, allows creating a vast library of porphyrinoid-based sensing layers. From among these, one can select optimal arrays for a particular application. This feature is particularly suitable for sensor array applications, where cross-selective receptors are required. This Review briefly describes chemical sensor principles. The main part of the Review is divided into two sections, describing the porphyrin-based devices devoted to the detection of gaseous or liquid samples, according to the corresponding transduction mechanism. Although most devices are based on porphyrin derivatives, seminal examples of the application of corroles or other porphyrin analogues are evidenced in dedicated sections.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>28222604</pmid><doi>10.1021/acs.chemrev.6b00361</doi><tpages>67</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0009-2665
ispartof Chemical reviews, 2017-02, Vol.117 (4), p.2517-2583
issn 0009-2665
1520-6890
language eng
recordid cdi_proquest_miscellaneous_1884126865
source MEDLINE; ACS Publications
subjects Activation
Arrays
Chemical sensors
Chemistry
Derivatives
Detection
Devices
Dopamine - analysis
Electrodes
Gases
Hydrogen Peroxide - analysis
Nanotubes - chemistry
Neurotransmitter Agents - analysis
Nitric Oxide - analysis
Porphyrins
Porphyrins - chemistry
Potentiometry
Sensor arrays
Sensors
Signal transduction
Spectrum Analysis - methods
Transducers
title Porphyrinoids for Chemical Sensor Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T01%3A49%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Porphyrinoids%20for%20Chemical%20Sensor%20Applications&rft.jtitle=Chemical%20reviews&rft.au=Paolesse,%20Roberto&rft.date=2017-02-22&rft.volume=117&rft.issue=4&rft.spage=2517&rft.epage=2583&rft.pages=2517-2583&rft.issn=0009-2665&rft.eissn=1520-6890&rft.coden=CHREAY&rft_id=info:doi/10.1021/acs.chemrev.6b00361&rft_dat=%3Cproquest_cross%3E1870986296%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1872118741&rft_id=info:pmid/28222604&rfr_iscdi=true