Influence of phase transitions and defect associates on the oxygen migration in the ion conductor Na1/2Bi1/2TiO3

Doped or non-stoichiometric Na1/2Bi1/2TiO3 (NBT) exhibits an ion conductivity comparable to yttria stabilized zirconia (YSZ) [M. Li et al., Nat. Mater., 2014, 13, 31-35], with a temperature dependent activation energy. To understand the origin of this temperature dependence we calculated oxygen vaca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2017-02, Vol.5 (9), p.4368-4375
Hauptverfasser: Meyer, Kai-Christian, Albe, Karsten
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4375
container_issue 9
container_start_page 4368
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 5
creator Meyer, Kai-Christian
Albe, Karsten
description Doped or non-stoichiometric Na1/2Bi1/2TiO3 (NBT) exhibits an ion conductivity comparable to yttria stabilized zirconia (YSZ) [M. Li et al., Nat. Mater., 2014, 13, 31-35], with a temperature dependent activation energy. To understand the origin of this temperature dependence we calculated oxygen vacancy migration barriers for three different phases of NBT by means of nudged elastic band calculations within a density functional theory (DFT) approach. We find that for structures with rock-salt ordered A-cations (111-order), the room temperature rhombohedral phase, the intermediate orthorhombic phase and the high temperature tetragonal phase show different migration barriers, decreasing from the rhombohedral to the tetragonal phase. The change in migration barriers from the rhombohedral to tetragonal phase is, however, not large enough to explain the experimentally observed difference. At lower temperatures, the association of oxygen vacancies with either Mg dopants or Bi vacancies increases the activation energy for the migration of oxygen vacancies. Thus, a combination of phase dependent migration barriers and defect association can explain the temperature dependent change in activation energy. Further, when a layered A-cation order (001-order) is present, the oxygen vacancies prefer to be located within the Bi-layer and a fast diffusion along the Bi-layer can occur. Large migration barriers are due to electronic defect states of the migrating oxygen ion.
doi_str_mv 10.1039/c6ta10566a
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884125227</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884125227</sourcerecordid><originalsourceid>FETCH-LOGICAL-p221t-9456f78ed3468ab494ef1169a0b7c0bba61d12de8449b43333ad1954c2bce6163</originalsourceid><addsrcrecordid>eNqNTM1OwzAYixBITGMXniBHLmNJmqbJESZ-Jk3sMs7T1-TrFtQlpUkleHs6DXHGB9uybBNyy9k9Z4VZWJWBs1IpuCATwUo2r6RRl39e62syS-mDjdCMKWMmpFuFph0wWKSxod0BEtLcQ0g--xgSheCowwZtppBStB4yJhoDzYdx8fW9x0CPft_DqU79OT9ZG4MbbI49fQO-EI9-pK3fFDfkqoE24exXp-T9-Wm7fJ2vNy-r5cN63gnB89zIUjWVRldIpaGWRmLDuTLA6sqyugbFHRcOtZSmlsUIcNyU0oraouKqmJK782_Xx88BU94dfbLYthAwDmnHtZZclEJU_6hWlZZCibL4AVMMa1w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877842625</pqid></control><display><type>article</type><title>Influence of phase transitions and defect associates on the oxygen migration in the ion conductor Na1/2Bi1/2TiO3</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Meyer, Kai-Christian ; Albe, Karsten</creator><creatorcontrib>Meyer, Kai-Christian ; Albe, Karsten</creatorcontrib><description>Doped or non-stoichiometric Na1/2Bi1/2TiO3 (NBT) exhibits an ion conductivity comparable to yttria stabilized zirconia (YSZ) [M. Li et al., Nat. Mater., 2014, 13, 31-35], with a temperature dependent activation energy. To understand the origin of this temperature dependence we calculated oxygen vacancy migration barriers for three different phases of NBT by means of nudged elastic band calculations within a density functional theory (DFT) approach. We find that for structures with rock-salt ordered A-cations (111-order), the room temperature rhombohedral phase, the intermediate orthorhombic phase and the high temperature tetragonal phase show different migration barriers, decreasing from the rhombohedral to the tetragonal phase. The change in migration barriers from the rhombohedral to tetragonal phase is, however, not large enough to explain the experimentally observed difference. At lower temperatures, the association of oxygen vacancies with either Mg dopants or Bi vacancies increases the activation energy for the migration of oxygen vacancies. Thus, a combination of phase dependent migration barriers and defect association can explain the temperature dependent change in activation energy. Further, when a layered A-cation order (001-order) is present, the oxygen vacancies prefer to be located within the Bi-layer and a fast diffusion along the Bi-layer can occur. Large migration barriers are due to electronic defect states of the migrating oxygen ion.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/c6ta10566a</identifier><language>eng</language><subject>Activation energy ; Barriers ; Defects ; Migration ; Oxygen ; Phase transformations ; Vacancies ; Yttria stabilized zirconia</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2017-02, Vol.5 (9), p.4368-4375</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Meyer, Kai-Christian</creatorcontrib><creatorcontrib>Albe, Karsten</creatorcontrib><title>Influence of phase transitions and defect associates on the oxygen migration in the ion conductor Na1/2Bi1/2TiO3</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Doped or non-stoichiometric Na1/2Bi1/2TiO3 (NBT) exhibits an ion conductivity comparable to yttria stabilized zirconia (YSZ) [M. Li et al., Nat. Mater., 2014, 13, 31-35], with a temperature dependent activation energy. To understand the origin of this temperature dependence we calculated oxygen vacancy migration barriers for three different phases of NBT by means of nudged elastic band calculations within a density functional theory (DFT) approach. We find that for structures with rock-salt ordered A-cations (111-order), the room temperature rhombohedral phase, the intermediate orthorhombic phase and the high temperature tetragonal phase show different migration barriers, decreasing from the rhombohedral to the tetragonal phase. The change in migration barriers from the rhombohedral to tetragonal phase is, however, not large enough to explain the experimentally observed difference. At lower temperatures, the association of oxygen vacancies with either Mg dopants or Bi vacancies increases the activation energy for the migration of oxygen vacancies. Thus, a combination of phase dependent migration barriers and defect association can explain the temperature dependent change in activation energy. Further, when a layered A-cation order (001-order) is present, the oxygen vacancies prefer to be located within the Bi-layer and a fast diffusion along the Bi-layer can occur. Large migration barriers are due to electronic defect states of the migrating oxygen ion.</description><subject>Activation energy</subject><subject>Barriers</subject><subject>Defects</subject><subject>Migration</subject><subject>Oxygen</subject><subject>Phase transformations</subject><subject>Vacancies</subject><subject>Yttria stabilized zirconia</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNTM1OwzAYixBITGMXniBHLmNJmqbJESZ-Jk3sMs7T1-TrFtQlpUkleHs6DXHGB9uybBNyy9k9Z4VZWJWBs1IpuCATwUo2r6RRl39e62syS-mDjdCMKWMmpFuFph0wWKSxod0BEtLcQ0g--xgSheCowwZtppBStB4yJhoDzYdx8fW9x0CPft_DqU79OT9ZG4MbbI49fQO-EI9-pK3fFDfkqoE24exXp-T9-Wm7fJ2vNy-r5cN63gnB89zIUjWVRldIpaGWRmLDuTLA6sqyugbFHRcOtZSmlsUIcNyU0oraouKqmJK782_Xx88BU94dfbLYthAwDmnHtZZclEJU_6hWlZZCibL4AVMMa1w</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Meyer, Kai-Christian</creator><creator>Albe, Karsten</creator><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170201</creationdate><title>Influence of phase transitions and defect associates on the oxygen migration in the ion conductor Na1/2Bi1/2TiO3</title><author>Meyer, Kai-Christian ; Albe, Karsten</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p221t-9456f78ed3468ab494ef1169a0b7c0bba61d12de8449b43333ad1954c2bce6163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Activation energy</topic><topic>Barriers</topic><topic>Defects</topic><topic>Migration</topic><topic>Oxygen</topic><topic>Phase transformations</topic><topic>Vacancies</topic><topic>Yttria stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Kai-Christian</creatorcontrib><creatorcontrib>Albe, Karsten</creatorcontrib><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Kai-Christian</au><au>Albe, Karsten</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Influence of phase transitions and defect associates on the oxygen migration in the ion conductor Na1/2Bi1/2TiO3</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>5</volume><issue>9</issue><spage>4368</spage><epage>4375</epage><pages>4368-4375</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Doped or non-stoichiometric Na1/2Bi1/2TiO3 (NBT) exhibits an ion conductivity comparable to yttria stabilized zirconia (YSZ) [M. Li et al., Nat. Mater., 2014, 13, 31-35], with a temperature dependent activation energy. To understand the origin of this temperature dependence we calculated oxygen vacancy migration barriers for three different phases of NBT by means of nudged elastic band calculations within a density functional theory (DFT) approach. We find that for structures with rock-salt ordered A-cations (111-order), the room temperature rhombohedral phase, the intermediate orthorhombic phase and the high temperature tetragonal phase show different migration barriers, decreasing from the rhombohedral to the tetragonal phase. The change in migration barriers from the rhombohedral to tetragonal phase is, however, not large enough to explain the experimentally observed difference. At lower temperatures, the association of oxygen vacancies with either Mg dopants or Bi vacancies increases the activation energy for the migration of oxygen vacancies. Thus, a combination of phase dependent migration barriers and defect association can explain the temperature dependent change in activation energy. Further, when a layered A-cation order (001-order) is present, the oxygen vacancies prefer to be located within the Bi-layer and a fast diffusion along the Bi-layer can occur. Large migration barriers are due to electronic defect states of the migrating oxygen ion.</abstract><doi>10.1039/c6ta10566a</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2017-02, Vol.5 (9), p.4368-4375
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_miscellaneous_1884125227
source Royal Society Of Chemistry Journals 2008-
subjects Activation energy
Barriers
Defects
Migration
Oxygen
Phase transformations
Vacancies
Yttria stabilized zirconia
title Influence of phase transitions and defect associates on the oxygen migration in the ion conductor Na1/2Bi1/2TiO3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A56%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Influence%20of%20phase%20transitions%20and%20defect%20associates%20on%20the%20oxygen%20migration%20in%20the%20ion%20conductor%20Na1/2Bi1/2TiO3&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Meyer,%20Kai-Christian&rft.date=2017-02-01&rft.volume=5&rft.issue=9&rft.spage=4368&rft.epage=4375&rft.pages=4368-4375&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/c6ta10566a&rft_dat=%3Cproquest%3E1884125227%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1877842625&rft_id=info:pmid/&rfr_iscdi=true