A new interacting two-fluid model and its consequences
Abstract In the background of a homogeneous and isotropic space-time with zero spatial curvature, we consider interacting scenarios between two barotropic fluids, one is the pressureless dark matter and the other one is dark energy (DE), in which the equation of state (EoS) in DE is either constant...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2017-04, Vol.466 (3), p.3497-3506 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3506 |
---|---|
container_issue | 3 |
container_start_page | 3497 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 466 |
creator | Sharov, G. S. Bhattacharya, S. Pan, S. Nunes, R. C. Chakraborty, S. |
description | Abstract
In the background of a homogeneous and isotropic space-time with zero spatial curvature, we consider interacting scenarios between two barotropic fluids, one is the pressureless dark matter and the other one is dark energy (DE), in which the equation of state (EoS) in DE is either constant or time-dependent. In particular, for constant EoS in DE, we show that the evolution equations for both fluids can be analytically solved. For all these scenarios, the model parameters have been constrained using the current astronomical observations from Type Ia supernovae, Hubble parameter measurements and baryon acoustic oscillation distance measurements. Our analysis shows that both for constant and variable EoS in DE, a very small but non-zero interaction in the dark sector is favoured while the EoS in DE can predict a slight phantom nature, i.e. the EoS in DE can cross the phantom divide line ‘−1’. On the other hand, although the models with variable EoS describe the observations better, the Akaike Information Criterion supports models with minimal number of parameters. However, it is found that all the models are very close to the Λ cold dark matter cosmology. |
doi_str_mv | 10.1093/mnras/stw3358 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884124323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw3358</oup_id><sourcerecordid>1877829326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-7224603253300f2f31c904a6f85e0020bec9c69ed1ec292407649c314708dfe03</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOD6W7gNu3MS5eTRNlsPgCwbc6DrU9FY6tMmYtAz-ezvOgOBGV3fzcc_5DiFXHG45WDnvQ6ryPA9bKQtzRGZc6oIJq_UxmQHIgpmS81NylvMaAJQUekb0ggbc0jYMmCo_tOGdDtvImm5sa9rHGjtahZq2Q6Y-howfIwaP-YKcNFWX8fJwz8nr_d3L8pGtnh-elosV80rCwEohlAYpCikBGtFI7i2oSjemQAABb-it1xZrjl5YoaDUynrJVQmmbhDkObnZ_92kOEXnwfVt9th1VcA4ZseNUVxMKvIfaFkaYSfrCb3-ha7jmMIkMlHaFIJrtctme8qnmHPCxm1S21fp03Fwu8Hd9-DuMPhPgThu_kC_ADIygC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868521640</pqid></control><display><type>article</type><title>A new interacting two-fluid model and its consequences</title><source>Oxford Journals Open Access Collection</source><creator>Sharov, G. S. ; Bhattacharya, S. ; Pan, S. ; Nunes, R. C. ; Chakraborty, S.</creator><creatorcontrib>Sharov, G. S. ; Bhattacharya, S. ; Pan, S. ; Nunes, R. C. ; Chakraborty, S.</creatorcontrib><description>Abstract
In the background of a homogeneous and isotropic space-time with zero spatial curvature, we consider interacting scenarios between two barotropic fluids, one is the pressureless dark matter and the other one is dark energy (DE), in which the equation of state (EoS) in DE is either constant or time-dependent. In particular, for constant EoS in DE, we show that the evolution equations for both fluids can be analytically solved. For all these scenarios, the model parameters have been constrained using the current astronomical observations from Type Ia supernovae, Hubble parameter measurements and baryon acoustic oscillation distance measurements. Our analysis shows that both for constant and variable EoS in DE, a very small but non-zero interaction in the dark sector is favoured while the EoS in DE can predict a slight phantom nature, i.e. the EoS in DE can cross the phantom divide line ‘−1’. On the other hand, although the models with variable EoS describe the observations better, the Akaike Information Criterion supports models with minimal number of parameters. However, it is found that all the models are very close to the Λ cold dark matter cosmology.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw3358</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Computational fluid dynamics ; Constants ; Cosmology ; Dark energy ; Dark matter ; Fluids ; Mathematical analysis ; Mathematical models ; Parameters ; Star & galaxy formation ; Supernovae ; Symbols</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2017-04, Vol.466 (3), p.3497-3506</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Apr 21, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-7224603253300f2f31c904a6f85e0020bec9c69ed1ec292407649c314708dfe03</citedby><cites>FETCH-LOGICAL-c430t-7224603253300f2f31c904a6f85e0020bec9c69ed1ec292407649c314708dfe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw3358$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Sharov, G. S.</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><creatorcontrib>Pan, S.</creatorcontrib><creatorcontrib>Nunes, R. C.</creatorcontrib><creatorcontrib>Chakraborty, S.</creatorcontrib><title>A new interacting two-fluid model and its consequences</title><title>Monthly notices of the Royal Astronomical Society</title><description>Abstract
In the background of a homogeneous and isotropic space-time with zero spatial curvature, we consider interacting scenarios between two barotropic fluids, one is the pressureless dark matter and the other one is dark energy (DE), in which the equation of state (EoS) in DE is either constant or time-dependent. In particular, for constant EoS in DE, we show that the evolution equations for both fluids can be analytically solved. For all these scenarios, the model parameters have been constrained using the current astronomical observations from Type Ia supernovae, Hubble parameter measurements and baryon acoustic oscillation distance measurements. Our analysis shows that both for constant and variable EoS in DE, a very small but non-zero interaction in the dark sector is favoured while the EoS in DE can predict a slight phantom nature, i.e. the EoS in DE can cross the phantom divide line ‘−1’. On the other hand, although the models with variable EoS describe the observations better, the Akaike Information Criterion supports models with minimal number of parameters. However, it is found that all the models are very close to the Λ cold dark matter cosmology.</description><subject>Computational fluid dynamics</subject><subject>Constants</subject><subject>Cosmology</subject><subject>Dark energy</subject><subject>Dark matter</subject><subject>Fluids</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Star & galaxy formation</subject><subject>Supernovae</subject><subject>Symbols</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYMoOD6W7gNu3MS5eTRNlsPgCwbc6DrU9FY6tMmYtAz-ezvOgOBGV3fzcc_5DiFXHG45WDnvQ6ryPA9bKQtzRGZc6oIJq_UxmQHIgpmS81NylvMaAJQUekb0ggbc0jYMmCo_tOGdDtvImm5sa9rHGjtahZq2Q6Y-howfIwaP-YKcNFWX8fJwz8nr_d3L8pGtnh-elosV80rCwEohlAYpCikBGtFI7i2oSjemQAABb-it1xZrjl5YoaDUynrJVQmmbhDkObnZ_92kOEXnwfVt9th1VcA4ZseNUVxMKvIfaFkaYSfrCb3-ha7jmMIkMlHaFIJrtctme8qnmHPCxm1S21fp03Fwu8Hd9-DuMPhPgThu_kC_ADIygC8</recordid><startdate>20170421</startdate><enddate>20170421</enddate><creator>Sharov, G. S.</creator><creator>Bhattacharya, S.</creator><creator>Pan, S.</creator><creator>Nunes, R. C.</creator><creator>Chakraborty, S.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20170421</creationdate><title>A new interacting two-fluid model and its consequences</title><author>Sharov, G. S. ; Bhattacharya, S. ; Pan, S. ; Nunes, R. C. ; Chakraborty, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-7224603253300f2f31c904a6f85e0020bec9c69ed1ec292407649c314708dfe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational fluid dynamics</topic><topic>Constants</topic><topic>Cosmology</topic><topic>Dark energy</topic><topic>Dark matter</topic><topic>Fluids</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Star & galaxy formation</topic><topic>Supernovae</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharov, G. S.</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><creatorcontrib>Pan, S.</creatorcontrib><creatorcontrib>Nunes, R. C.</creatorcontrib><creatorcontrib>Chakraborty, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sharov, G. S.</au><au>Bhattacharya, S.</au><au>Pan, S.</au><au>Nunes, R. C.</au><au>Chakraborty, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new interacting two-fluid model and its consequences</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2017-04-21</date><risdate>2017</risdate><volume>466</volume><issue>3</issue><spage>3497</spage><epage>3506</epage><pages>3497-3506</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract
In the background of a homogeneous and isotropic space-time with zero spatial curvature, we consider interacting scenarios between two barotropic fluids, one is the pressureless dark matter and the other one is dark energy (DE), in which the equation of state (EoS) in DE is either constant or time-dependent. In particular, for constant EoS in DE, we show that the evolution equations for both fluids can be analytically solved. For all these scenarios, the model parameters have been constrained using the current astronomical observations from Type Ia supernovae, Hubble parameter measurements and baryon acoustic oscillation distance measurements. Our analysis shows that both for constant and variable EoS in DE, a very small but non-zero interaction in the dark sector is favoured while the EoS in DE can predict a slight phantom nature, i.e. the EoS in DE can cross the phantom divide line ‘−1’. On the other hand, although the models with variable EoS describe the observations better, the Akaike Information Criterion supports models with minimal number of parameters. However, it is found that all the models are very close to the Λ cold dark matter cosmology.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw3358</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2017-04, Vol.466 (3), p.3497-3506 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884124323 |
source | Oxford Journals Open Access Collection |
subjects | Computational fluid dynamics Constants Cosmology Dark energy Dark matter Fluids Mathematical analysis Mathematical models Parameters Star & galaxy formation Supernovae Symbols |
title | A new interacting two-fluid model and its consequences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20interacting%20two-fluid%20model%20and%20its%20consequences&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Sharov,%20G.%20S.&rft.date=2017-04-21&rft.volume=466&rft.issue=3&rft.spage=3497&rft.epage=3506&rft.pages=3497-3506&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw3358&rft_dat=%3Cproquest_TOX%3E1877829326%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1868521640&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw3358&rfr_iscdi=true |