A new interacting two-fluid model and its consequences

Abstract In the background of a homogeneous and isotropic space-time with zero spatial curvature, we consider interacting scenarios between two barotropic fluids, one is the pressureless dark matter and the other one is dark energy (DE), in which the equation of state (EoS) in DE is either constant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Monthly notices of the Royal Astronomical Society 2017-04, Vol.466 (3), p.3497-3506
Hauptverfasser: Sharov, G. S., Bhattacharya, S., Pan, S., Nunes, R. C., Chakraborty, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3506
container_issue 3
container_start_page 3497
container_title Monthly notices of the Royal Astronomical Society
container_volume 466
creator Sharov, G. S.
Bhattacharya, S.
Pan, S.
Nunes, R. C.
Chakraborty, S.
description Abstract In the background of a homogeneous and isotropic space-time with zero spatial curvature, we consider interacting scenarios between two barotropic fluids, one is the pressureless dark matter and the other one is dark energy (DE), in which the equation of state (EoS) in DE is either constant or time-dependent. In particular, for constant EoS in DE, we show that the evolution equations for both fluids can be analytically solved. For all these scenarios, the model parameters have been constrained using the current astronomical observations from Type Ia supernovae, Hubble parameter measurements and baryon acoustic oscillation distance measurements. Our analysis shows that both for constant and variable EoS in DE, a very small but non-zero interaction in the dark sector is favoured while the EoS in DE can predict a slight phantom nature, i.e. the EoS in DE can cross the phantom divide line ‘−1’. On the other hand, although the models with variable EoS describe the observations better, the Akaike Information Criterion supports models with minimal number of parameters. However, it is found that all the models are very close to the Λ cold dark matter cosmology.
doi_str_mv 10.1093/mnras/stw3358
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884124323</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stw3358</oup_id><sourcerecordid>1877829326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-7224603253300f2f31c904a6f85e0020bec9c69ed1ec292407649c314708dfe03</originalsourceid><addsrcrecordid>eNqNkEtLxDAUhYMoOD6W7gNu3MS5eTRNlsPgCwbc6DrU9FY6tMmYtAz-ezvOgOBGV3fzcc_5DiFXHG45WDnvQ6ryPA9bKQtzRGZc6oIJq_UxmQHIgpmS81NylvMaAJQUekb0ggbc0jYMmCo_tOGdDtvImm5sa9rHGjtahZq2Q6Y-howfIwaP-YKcNFWX8fJwz8nr_d3L8pGtnh-elosV80rCwEohlAYpCikBGtFI7i2oSjemQAABb-it1xZrjl5YoaDUynrJVQmmbhDkObnZ_92kOEXnwfVt9th1VcA4ZseNUVxMKvIfaFkaYSfrCb3-ha7jmMIkMlHaFIJrtctme8qnmHPCxm1S21fp03Fwu8Hd9-DuMPhPgThu_kC_ADIygC8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1868521640</pqid></control><display><type>article</type><title>A new interacting two-fluid model and its consequences</title><source>Oxford Journals Open Access Collection</source><creator>Sharov, G. S. ; Bhattacharya, S. ; Pan, S. ; Nunes, R. C. ; Chakraborty, S.</creator><creatorcontrib>Sharov, G. S. ; Bhattacharya, S. ; Pan, S. ; Nunes, R. C. ; Chakraborty, S.</creatorcontrib><description>Abstract In the background of a homogeneous and isotropic space-time with zero spatial curvature, we consider interacting scenarios between two barotropic fluids, one is the pressureless dark matter and the other one is dark energy (DE), in which the equation of state (EoS) in DE is either constant or time-dependent. In particular, for constant EoS in DE, we show that the evolution equations for both fluids can be analytically solved. For all these scenarios, the model parameters have been constrained using the current astronomical observations from Type Ia supernovae, Hubble parameter measurements and baryon acoustic oscillation distance measurements. Our analysis shows that both for constant and variable EoS in DE, a very small but non-zero interaction in the dark sector is favoured while the EoS in DE can predict a slight phantom nature, i.e. the EoS in DE can cross the phantom divide line ‘−1’. On the other hand, although the models with variable EoS describe the observations better, the Akaike Information Criterion supports models with minimal number of parameters. However, it is found that all the models are very close to the Λ cold dark matter cosmology.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stw3358</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Computational fluid dynamics ; Constants ; Cosmology ; Dark energy ; Dark matter ; Fluids ; Mathematical analysis ; Mathematical models ; Parameters ; Star &amp; galaxy formation ; Supernovae ; Symbols</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2017-04, Vol.466 (3), p.3497-3506</ispartof><rights>2016 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2016</rights><rights>Copyright Oxford University Press, UK Apr 21, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-7224603253300f2f31c904a6f85e0020bec9c69ed1ec292407649c314708dfe03</citedby><cites>FETCH-LOGICAL-c430t-7224603253300f2f31c904a6f85e0020bec9c69ed1ec292407649c314708dfe03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stw3358$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Sharov, G. S.</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><creatorcontrib>Pan, S.</creatorcontrib><creatorcontrib>Nunes, R. C.</creatorcontrib><creatorcontrib>Chakraborty, S.</creatorcontrib><title>A new interacting two-fluid model and its consequences</title><title>Monthly notices of the Royal Astronomical Society</title><description>Abstract In the background of a homogeneous and isotropic space-time with zero spatial curvature, we consider interacting scenarios between two barotropic fluids, one is the pressureless dark matter and the other one is dark energy (DE), in which the equation of state (EoS) in DE is either constant or time-dependent. In particular, for constant EoS in DE, we show that the evolution equations for both fluids can be analytically solved. For all these scenarios, the model parameters have been constrained using the current astronomical observations from Type Ia supernovae, Hubble parameter measurements and baryon acoustic oscillation distance measurements. Our analysis shows that both for constant and variable EoS in DE, a very small but non-zero interaction in the dark sector is favoured while the EoS in DE can predict a slight phantom nature, i.e. the EoS in DE can cross the phantom divide line ‘−1’. On the other hand, although the models with variable EoS describe the observations better, the Akaike Information Criterion supports models with minimal number of parameters. However, it is found that all the models are very close to the Λ cold dark matter cosmology.</description><subject>Computational fluid dynamics</subject><subject>Constants</subject><subject>Cosmology</subject><subject>Dark energy</subject><subject>Dark matter</subject><subject>Fluids</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Parameters</subject><subject>Star &amp; galaxy formation</subject><subject>Supernovae</subject><subject>Symbols</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkEtLxDAUhYMoOD6W7gNu3MS5eTRNlsPgCwbc6DrU9FY6tMmYtAz-ezvOgOBGV3fzcc_5DiFXHG45WDnvQ6ryPA9bKQtzRGZc6oIJq_UxmQHIgpmS81NylvMaAJQUekb0ggbc0jYMmCo_tOGdDtvImm5sa9rHGjtahZq2Q6Y-howfIwaP-YKcNFWX8fJwz8nr_d3L8pGtnh-elosV80rCwEohlAYpCikBGtFI7i2oSjemQAABb-it1xZrjl5YoaDUynrJVQmmbhDkObnZ_92kOEXnwfVt9th1VcA4ZseNUVxMKvIfaFkaYSfrCb3-ha7jmMIkMlHaFIJrtctme8qnmHPCxm1S21fp03Fwu8Hd9-DuMPhPgThu_kC_ADIygC8</recordid><startdate>20170421</startdate><enddate>20170421</enddate><creator>Sharov, G. S.</creator><creator>Bhattacharya, S.</creator><creator>Pan, S.</creator><creator>Nunes, R. C.</creator><creator>Chakraborty, S.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20170421</creationdate><title>A new interacting two-fluid model and its consequences</title><author>Sharov, G. S. ; Bhattacharya, S. ; Pan, S. ; Nunes, R. C. ; Chakraborty, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-7224603253300f2f31c904a6f85e0020bec9c69ed1ec292407649c314708dfe03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational fluid dynamics</topic><topic>Constants</topic><topic>Cosmology</topic><topic>Dark energy</topic><topic>Dark matter</topic><topic>Fluids</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Parameters</topic><topic>Star &amp; galaxy formation</topic><topic>Supernovae</topic><topic>Symbols</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharov, G. S.</creatorcontrib><creatorcontrib>Bhattacharya, S.</creatorcontrib><creatorcontrib>Pan, S.</creatorcontrib><creatorcontrib>Nunes, R. C.</creatorcontrib><creatorcontrib>Chakraborty, S.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sharov, G. S.</au><au>Bhattacharya, S.</au><au>Pan, S.</au><au>Nunes, R. C.</au><au>Chakraborty, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new interacting two-fluid model and its consequences</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><date>2017-04-21</date><risdate>2017</risdate><volume>466</volume><issue>3</issue><spage>3497</spage><epage>3506</epage><pages>3497-3506</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>Abstract In the background of a homogeneous and isotropic space-time with zero spatial curvature, we consider interacting scenarios between two barotropic fluids, one is the pressureless dark matter and the other one is dark energy (DE), in which the equation of state (EoS) in DE is either constant or time-dependent. In particular, for constant EoS in DE, we show that the evolution equations for both fluids can be analytically solved. For all these scenarios, the model parameters have been constrained using the current astronomical observations from Type Ia supernovae, Hubble parameter measurements and baryon acoustic oscillation distance measurements. Our analysis shows that both for constant and variable EoS in DE, a very small but non-zero interaction in the dark sector is favoured while the EoS in DE can predict a slight phantom nature, i.e. the EoS in DE can cross the phantom divide line ‘−1’. On the other hand, although the models with variable EoS describe the observations better, the Akaike Information Criterion supports models with minimal number of parameters. However, it is found that all the models are very close to the Λ cold dark matter cosmology.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stw3358</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2017-04, Vol.466 (3), p.3497-3506
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1884124323
source Oxford Journals Open Access Collection
subjects Computational fluid dynamics
Constants
Cosmology
Dark energy
Dark matter
Fluids
Mathematical analysis
Mathematical models
Parameters
Star & galaxy formation
Supernovae
Symbols
title A new interacting two-fluid model and its consequences
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T14%3A56%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20interacting%20two-fluid%20model%20and%20its%20consequences&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Sharov,%20G.%20S.&rft.date=2017-04-21&rft.volume=466&rft.issue=3&rft.spage=3497&rft.epage=3506&rft.pages=3497-3506&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stw3358&rft_dat=%3Cproquest_TOX%3E1877829326%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1868521640&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stw3358&rfr_iscdi=true