Cloud-Base Height Estimation from VIIRS. Part II: A Statistical Algorithm Based on A-Train Satellite Data
Knowledge of cloud-base height (CBH) is important to describe cloud radiative feedbacks in numerical models and is of practical relevance to the aviation community. Whereas satellite remote sensing with passive radiometers traditionally has provided a ready means for estimating cloud-top height (CTH...
Gespeichert in:
Veröffentlicht in: | Journal of atmospheric and oceanic technology 2017-03, Vol.34 (3), p.585-598 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 598 |
---|---|
container_issue | 3 |
container_start_page | 585 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 34 |
creator | Noh, Yoo-Jeong sythe, John M Miller, Steven D Seaman, Curtis J Li, Yue Heidinger, Andrew K Lindsey, Daniel T Rogers, Matthew A Partain, Philip T |
description | Knowledge of cloud-base height (CBH) is important to describe cloud radiative feedbacks in numerical models and is of practical relevance to the aviation community. Whereas satellite remote sensing with passive radiometers traditionally has provided a ready means for estimating cloud-top height (CTH) and cloud water path (CWP), assignment of CBH requires heavy assumptions on the distribution of CWP within the cloud profile. An attempt to retrieve CBH has been included as part of the VIIRS environmental data records, produced operationally as part of the Suomi-National Polar-Orbiting Partnership (SNPP) and the forthcoming Joint Polar Satellite System. Through formal validation studies tied to the program, it was found that the operational CBH algorithm failed to meet performance specifications in many cases. This paper presents a new methodology for retrieving CBH of the uppermost cloud layer, developed through statistical analyses relating cloud geometric thickness (CGT) to CTH and CWP. The semiempirical approach, which relates these parameters via piecewise fitting, enlists A-Train satellite data [CloudSat cloud profiling radar (CPR), CALIPSO/CALIOP, and Aqua MODIS]. CBH is provided as the residual difference between CTH and CGT. By eliminating cloud type-dependent assumptions on CWP distribution, artifacts common to the operational algorithm (which contribute to high errors) are reduced. Special accommodations are made for handling optically thin cirrus and deep convection. An application to SNPP VIIRS is demonstrated, and the results are compared against global CloudSat observations. From the VIIRS-CloudSat daytime matchups (September-October 2013 and January-May 2015), the new algorithm outperforms the operational SNPP VIIRS algorithm, particularly when the retrieved CTH is accurate. Best performance is expected for single-layer liquid-phase clouds. |
doi_str_mv | 10.1175/JTECH-D-16-0110.1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884124027</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884124027</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-4c1b8baab97ef95139d27ee5bf90e66958c9b866a8e3c7234c118982dd916efd3</originalsourceid><addsrcrecordid>eNqNkTFPwzAQhS0EEqXwA9gssbC4-OzEjtlKW2hQJRAtrJaTOG2qtCm2O_DvcSkTE9NJd989vbuH0DXQAYBM754Xk9GUjAkIQuHQPEE9SBklNGHiFPWo5IrQVLJzdOH9mlIKHEQPNaO221fkwXiLp7ZZrgKe-NBsTGi6La5dt8Efef42H-BX4wLO83s8xPMQx5EqTYuH7bJzTVht8EGjwnFrSBbONFs8N8G2bRMsHptgLtFZbVpvr35rH70_ThbR9OzlKR8NZ6TkXAWSlFBkhTGFkrZWKXBVMWltWtSKWiFUmpWqyIQwmeWlZDzykKmMVZUCYeuK99HtUXfnus-99UFvGl9GI2Zru73XkGUJsIQy-Q9UygirJI3ozR903e3dNh6iQbFEUqpkEik4UqXrvHe21jsXf-m-NFB9yEn_5KTHGoQ-5KSBfwOT-YN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924700974</pqid></control><display><type>article</type><title>Cloud-Base Height Estimation from VIIRS. Part II: A Statistical Algorithm Based on A-Train Satellite Data</title><source>American Meteorological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Noh, Yoo-Jeong ; sythe, John M ; Miller, Steven D ; Seaman, Curtis J ; Li, Yue ; Heidinger, Andrew K ; Lindsey, Daniel T ; Rogers, Matthew A ; Partain, Philip T</creator><creatorcontrib>Noh, Yoo-Jeong ; sythe, John M ; Miller, Steven D ; Seaman, Curtis J ; Li, Yue ; Heidinger, Andrew K ; Lindsey, Daniel T ; Rogers, Matthew A ; Partain, Philip T</creatorcontrib><description>Knowledge of cloud-base height (CBH) is important to describe cloud radiative feedbacks in numerical models and is of practical relevance to the aviation community. Whereas satellite remote sensing with passive radiometers traditionally has provided a ready means for estimating cloud-top height (CTH) and cloud water path (CWP), assignment of CBH requires heavy assumptions on the distribution of CWP within the cloud profile. An attempt to retrieve CBH has been included as part of the VIIRS environmental data records, produced operationally as part of the Suomi-National Polar-Orbiting Partnership (SNPP) and the forthcoming Joint Polar Satellite System. Through formal validation studies tied to the program, it was found that the operational CBH algorithm failed to meet performance specifications in many cases. This paper presents a new methodology for retrieving CBH of the uppermost cloud layer, developed through statistical analyses relating cloud geometric thickness (CGT) to CTH and CWP. The semiempirical approach, which relates these parameters via piecewise fitting, enlists A-Train satellite data [CloudSat cloud profiling radar (CPR), CALIPSO/CALIOP, and Aqua MODIS]. CBH is provided as the residual difference between CTH and CGT. By eliminating cloud type-dependent assumptions on CWP distribution, artifacts common to the operational algorithm (which contribute to high errors) are reduced. Special accommodations are made for handling optically thin cirrus and deep convection. An application to SNPP VIIRS is demonstrated, and the results are compared against global CloudSat observations. From the VIIRS-CloudSat daytime matchups (September-October 2013 and January-May 2015), the new algorithm outperforms the operational SNPP VIIRS algorithm, particularly when the retrieved CTH is accurate. Best performance is expected for single-layer liquid-phase clouds.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-16-0110.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Accommodation ; Algorithms ; Atmosphere ; Atmospherics ; Aviation ; CALIPSO (Pathfinder satellite) ; Cloud computing ; Cloud types ; Cloud water ; Clouds ; Convection ; Data ; Data processing ; Daytime ; Distribution ; Estimating ; Fittings ; Handling ; Height ; Marine ; Mathematical models ; Meteorological satellites ; Microwave imagery ; MODIS ; Numerical models ; Profiling ; Radar ; Radiometers ; Remote sensing ; Satellite data ; Satellites ; Sensors ; Statistical analysis ; Statistics</subject><ispartof>Journal of atmospheric and oceanic technology, 2017-03, Vol.34 (3), p.585-598</ispartof><rights>Copyright American Meteorological Society Mar 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-4c1b8baab97ef95139d27ee5bf90e66958c9b866a8e3c7234c118982dd916efd3</citedby><cites>FETCH-LOGICAL-c339t-4c1b8baab97ef95139d27ee5bf90e66958c9b866a8e3c7234c118982dd916efd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,3681,27924,27925</link.rule.ids></links><search><creatorcontrib>Noh, Yoo-Jeong</creatorcontrib><creatorcontrib>sythe, John M</creatorcontrib><creatorcontrib>Miller, Steven D</creatorcontrib><creatorcontrib>Seaman, Curtis J</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Heidinger, Andrew K</creatorcontrib><creatorcontrib>Lindsey, Daniel T</creatorcontrib><creatorcontrib>Rogers, Matthew A</creatorcontrib><creatorcontrib>Partain, Philip T</creatorcontrib><title>Cloud-Base Height Estimation from VIIRS. Part II: A Statistical Algorithm Based on A-Train Satellite Data</title><title>Journal of atmospheric and oceanic technology</title><description>Knowledge of cloud-base height (CBH) is important to describe cloud radiative feedbacks in numerical models and is of practical relevance to the aviation community. Whereas satellite remote sensing with passive radiometers traditionally has provided a ready means for estimating cloud-top height (CTH) and cloud water path (CWP), assignment of CBH requires heavy assumptions on the distribution of CWP within the cloud profile. An attempt to retrieve CBH has been included as part of the VIIRS environmental data records, produced operationally as part of the Suomi-National Polar-Orbiting Partnership (SNPP) and the forthcoming Joint Polar Satellite System. Through formal validation studies tied to the program, it was found that the operational CBH algorithm failed to meet performance specifications in many cases. This paper presents a new methodology for retrieving CBH of the uppermost cloud layer, developed through statistical analyses relating cloud geometric thickness (CGT) to CTH and CWP. The semiempirical approach, which relates these parameters via piecewise fitting, enlists A-Train satellite data [CloudSat cloud profiling radar (CPR), CALIPSO/CALIOP, and Aqua MODIS]. CBH is provided as the residual difference between CTH and CGT. By eliminating cloud type-dependent assumptions on CWP distribution, artifacts common to the operational algorithm (which contribute to high errors) are reduced. Special accommodations are made for handling optically thin cirrus and deep convection. An application to SNPP VIIRS is demonstrated, and the results are compared against global CloudSat observations. From the VIIRS-CloudSat daytime matchups (September-October 2013 and January-May 2015), the new algorithm outperforms the operational SNPP VIIRS algorithm, particularly when the retrieved CTH is accurate. Best performance is expected for single-layer liquid-phase clouds.</description><subject>Accommodation</subject><subject>Algorithms</subject><subject>Atmosphere</subject><subject>Atmospherics</subject><subject>Aviation</subject><subject>CALIPSO (Pathfinder satellite)</subject><subject>Cloud computing</subject><subject>Cloud types</subject><subject>Cloud water</subject><subject>Clouds</subject><subject>Convection</subject><subject>Data</subject><subject>Data processing</subject><subject>Daytime</subject><subject>Distribution</subject><subject>Estimating</subject><subject>Fittings</subject><subject>Handling</subject><subject>Height</subject><subject>Marine</subject><subject>Mathematical models</subject><subject>Meteorological satellites</subject><subject>Microwave imagery</subject><subject>MODIS</subject><subject>Numerical models</subject><subject>Profiling</subject><subject>Radar</subject><subject>Radiometers</subject><subject>Remote sensing</subject><subject>Satellite data</subject><subject>Satellites</subject><subject>Sensors</subject><subject>Statistical analysis</subject><subject>Statistics</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqNkTFPwzAQhS0EEqXwA9gssbC4-OzEjtlKW2hQJRAtrJaTOG2qtCm2O_DvcSkTE9NJd989vbuH0DXQAYBM754Xk9GUjAkIQuHQPEE9SBklNGHiFPWo5IrQVLJzdOH9mlIKHEQPNaO221fkwXiLp7ZZrgKe-NBsTGi6La5dt8Efef42H-BX4wLO83s8xPMQx5EqTYuH7bJzTVht8EGjwnFrSBbONFs8N8G2bRMsHptgLtFZbVpvr35rH70_ThbR9OzlKR8NZ6TkXAWSlFBkhTGFkrZWKXBVMWltWtSKWiFUmpWqyIQwmeWlZDzykKmMVZUCYeuK99HtUXfnus-99UFvGl9GI2Zru73XkGUJsIQy-Q9UygirJI3ozR903e3dNh6iQbFEUqpkEik4UqXrvHe21jsXf-m-NFB9yEn_5KTHGoQ-5KSBfwOT-YN8</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Noh, Yoo-Jeong</creator><creator>sythe, John M</creator><creator>Miller, Steven D</creator><creator>Seaman, Curtis J</creator><creator>Li, Yue</creator><creator>Heidinger, Andrew K</creator><creator>Lindsey, Daniel T</creator><creator>Rogers, Matthew A</creator><creator>Partain, Philip T</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20170301</creationdate><title>Cloud-Base Height Estimation from VIIRS. Part II: A Statistical Algorithm Based on A-Train Satellite Data</title><author>Noh, Yoo-Jeong ; sythe, John M ; Miller, Steven D ; Seaman, Curtis J ; Li, Yue ; Heidinger, Andrew K ; Lindsey, Daniel T ; Rogers, Matthew A ; Partain, Philip T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-4c1b8baab97ef95139d27ee5bf90e66958c9b866a8e3c7234c118982dd916efd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accommodation</topic><topic>Algorithms</topic><topic>Atmosphere</topic><topic>Atmospherics</topic><topic>Aviation</topic><topic>CALIPSO (Pathfinder satellite)</topic><topic>Cloud computing</topic><topic>Cloud types</topic><topic>Cloud water</topic><topic>Clouds</topic><topic>Convection</topic><topic>Data</topic><topic>Data processing</topic><topic>Daytime</topic><topic>Distribution</topic><topic>Estimating</topic><topic>Fittings</topic><topic>Handling</topic><topic>Height</topic><topic>Marine</topic><topic>Mathematical models</topic><topic>Meteorological satellites</topic><topic>Microwave imagery</topic><topic>MODIS</topic><topic>Numerical models</topic><topic>Profiling</topic><topic>Radar</topic><topic>Radiometers</topic><topic>Remote sensing</topic><topic>Satellite data</topic><topic>Satellites</topic><topic>Sensors</topic><topic>Statistical analysis</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Noh, Yoo-Jeong</creatorcontrib><creatorcontrib>sythe, John M</creatorcontrib><creatorcontrib>Miller, Steven D</creatorcontrib><creatorcontrib>Seaman, Curtis J</creatorcontrib><creatorcontrib>Li, Yue</creatorcontrib><creatorcontrib>Heidinger, Andrew K</creatorcontrib><creatorcontrib>Lindsey, Daniel T</creatorcontrib><creatorcontrib>Rogers, Matthew A</creatorcontrib><creatorcontrib>Partain, Philip T</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Noh, Yoo-Jeong</au><au>sythe, John M</au><au>Miller, Steven D</au><au>Seaman, Curtis J</au><au>Li, Yue</au><au>Heidinger, Andrew K</au><au>Lindsey, Daniel T</au><au>Rogers, Matthew A</au><au>Partain, Philip T</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cloud-Base Height Estimation from VIIRS. Part II: A Statistical Algorithm Based on A-Train Satellite Data</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2017-03-01</date><risdate>2017</risdate><volume>34</volume><issue>3</issue><spage>585</spage><epage>598</epage><pages>585-598</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Knowledge of cloud-base height (CBH) is important to describe cloud radiative feedbacks in numerical models and is of practical relevance to the aviation community. Whereas satellite remote sensing with passive radiometers traditionally has provided a ready means for estimating cloud-top height (CTH) and cloud water path (CWP), assignment of CBH requires heavy assumptions on the distribution of CWP within the cloud profile. An attempt to retrieve CBH has been included as part of the VIIRS environmental data records, produced operationally as part of the Suomi-National Polar-Orbiting Partnership (SNPP) and the forthcoming Joint Polar Satellite System. Through formal validation studies tied to the program, it was found that the operational CBH algorithm failed to meet performance specifications in many cases. This paper presents a new methodology for retrieving CBH of the uppermost cloud layer, developed through statistical analyses relating cloud geometric thickness (CGT) to CTH and CWP. The semiempirical approach, which relates these parameters via piecewise fitting, enlists A-Train satellite data [CloudSat cloud profiling radar (CPR), CALIPSO/CALIOP, and Aqua MODIS]. CBH is provided as the residual difference between CTH and CGT. By eliminating cloud type-dependent assumptions on CWP distribution, artifacts common to the operational algorithm (which contribute to high errors) are reduced. Special accommodations are made for handling optically thin cirrus and deep convection. An application to SNPP VIIRS is demonstrated, and the results are compared against global CloudSat observations. From the VIIRS-CloudSat daytime matchups (September-October 2013 and January-May 2015), the new algorithm outperforms the operational SNPP VIIRS algorithm, particularly when the retrieved CTH is accurate. Best performance is expected for single-layer liquid-phase clouds.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-16-0110.1</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2017-03, Vol.34 (3), p.585-598 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884124027 |
source | American Meteorological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Accommodation Algorithms Atmosphere Atmospherics Aviation CALIPSO (Pathfinder satellite) Cloud computing Cloud types Cloud water Clouds Convection Data Data processing Daytime Distribution Estimating Fittings Handling Height Marine Mathematical models Meteorological satellites Microwave imagery MODIS Numerical models Profiling Radar Radiometers Remote sensing Satellite data Satellites Sensors Statistical analysis Statistics |
title | Cloud-Base Height Estimation from VIIRS. Part II: A Statistical Algorithm Based on A-Train Satellite Data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T21%3A59%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cloud-Base%20Height%20Estimation%20from%20VIIRS.%20Part%20II:%20A%20Statistical%20Algorithm%20Based%20on%20A-Train%20Satellite%20Data&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Noh,%20Yoo-Jeong&rft.date=2017-03-01&rft.volume=34&rft.issue=3&rft.spage=585&rft.epage=598&rft.pages=585-598&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-16-0110.1&rft_dat=%3Cproquest_cross%3E1884124027%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1924700974&rft_id=info:pmid/&rfr_iscdi=true |