Quantum confinement induced band gaps in MgB sub(2) nanosheets

The discovery of two-dimensional semiconducting materials, a decade ago, spawned an entire sub-field within solid-state physics that is focused on the development of nanoelectronics. Here we present a new class of semiconducting two-dimensional material based on hexagonal MgB sub(2). Although MgB su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:2d materials 2016-09, Vol.3 (3), p.031003-031003
Hauptverfasser: Xu, Bo Z, Beckman, Scott P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 031003
container_issue 3
container_start_page 031003
container_title 2d materials
container_volume 3
creator Xu, Bo Z
Beckman, Scott P
description The discovery of two-dimensional semiconducting materials, a decade ago, spawned an entire sub-field within solid-state physics that is focused on the development of nanoelectronics. Here we present a new class of semiconducting two-dimensional material based on hexagonal MgB sub(2). Although MgB sub(2) is a semimetal, similar to the other well-studied transition metal diborides, we demonstrate that, unlike the transition metal diborides, thinning MgB sub(2), to create nanosheets, opens a band gap in the density of states. We predict that a 7 A thick MgB sub(2) nanosheet will have a band gap of 0.51 eV. MgB sub(2) nanosheets differ from other two-dimensional semiconductors in that the band gap is introduced by (001) surfaces and is opened by the quantum confinement effect. The implications of these findings are that nanostructured MgB sub(2) is not merely a new composition, but also has intrinsic mechanisms for tuning its electronic properties, which may facilitate the development of nanoelectronics.
doi_str_mv 10.1088/2053-1583/3/3/031003
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884123153</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884123153</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18841231533</originalsourceid><addsrcrecordid>eNqVikEPwUAQRjdCQug_cNgjB8x029qTAyEuDhJ32baDSjvFdP8_EhFX-Q7v5eVTaogwRbB2FkJsJhhbM3sPDAKYlup9c_vHuyoQuQIAzhMTYdJTi7133PhKZzWfCqaKuNEF5z6jXKeOc312N3kVvTsvtfh0FI41O67lQtTIQHVOrhQKPuyr0WZ9WG0nt0d99yTNsSoko7J0TLWXI1obYWgwNuaP6xMUWELy</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884123153</pqid></control><display><type>article</type><title>Quantum confinement induced band gaps in MgB sub(2) nanosheets</title><source>IOP Publishing Journals</source><source>IOPscience extra</source><source>Institute of Physics (IOP) Journals - HEAL-Link</source><creator>Xu, Bo Z ; Beckman, Scott P</creator><creatorcontrib>Xu, Bo Z ; Beckman, Scott P</creatorcontrib><description>The discovery of two-dimensional semiconducting materials, a decade ago, spawned an entire sub-field within solid-state physics that is focused on the development of nanoelectronics. Here we present a new class of semiconducting two-dimensional material based on hexagonal MgB sub(2). Although MgB sub(2) is a semimetal, similar to the other well-studied transition metal diborides, we demonstrate that, unlike the transition metal diborides, thinning MgB sub(2), to create nanosheets, opens a band gap in the density of states. We predict that a 7 A thick MgB sub(2) nanosheet will have a band gap of 0.51 eV. MgB sub(2) nanosheets differ from other two-dimensional semiconductors in that the band gap is introduced by (001) surfaces and is opened by the quantum confinement effect. The implications of these findings are that nanostructured MgB sub(2) is not merely a new composition, but also has intrinsic mechanisms for tuning its electronic properties, which may facilitate the development of nanoelectronics.</description><identifier>ISSN: 2053-1583</identifier><identifier>EISSN: 2053-1583</identifier><identifier>DOI: 10.1088/2053-1583/3/3/031003</identifier><language>eng</language><subject>Borides ; Energy gaps (solid state) ; Magnesium compounds ; Nanoelectronics ; Nanostructure ; Quantum confinement ; Semiconductors ; Transition metals</subject><ispartof>2d materials, 2016-09, Vol.3 (3), p.031003-031003</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Xu, Bo Z</creatorcontrib><creatorcontrib>Beckman, Scott P</creatorcontrib><title>Quantum confinement induced band gaps in MgB sub(2) nanosheets</title><title>2d materials</title><description>The discovery of two-dimensional semiconducting materials, a decade ago, spawned an entire sub-field within solid-state physics that is focused on the development of nanoelectronics. Here we present a new class of semiconducting two-dimensional material based on hexagonal MgB sub(2). Although MgB sub(2) is a semimetal, similar to the other well-studied transition metal diborides, we demonstrate that, unlike the transition metal diborides, thinning MgB sub(2), to create nanosheets, opens a band gap in the density of states. We predict that a 7 A thick MgB sub(2) nanosheet will have a band gap of 0.51 eV. MgB sub(2) nanosheets differ from other two-dimensional semiconductors in that the band gap is introduced by (001) surfaces and is opened by the quantum confinement effect. The implications of these findings are that nanostructured MgB sub(2) is not merely a new composition, but also has intrinsic mechanisms for tuning its electronic properties, which may facilitate the development of nanoelectronics.</description><subject>Borides</subject><subject>Energy gaps (solid state)</subject><subject>Magnesium compounds</subject><subject>Nanoelectronics</subject><subject>Nanostructure</subject><subject>Quantum confinement</subject><subject>Semiconductors</subject><subject>Transition metals</subject><issn>2053-1583</issn><issn>2053-1583</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNqVikEPwUAQRjdCQug_cNgjB8x029qTAyEuDhJ32baDSjvFdP8_EhFX-Q7v5eVTaogwRbB2FkJsJhhbM3sPDAKYlup9c_vHuyoQuQIAzhMTYdJTi7133PhKZzWfCqaKuNEF5z6jXKeOc312N3kVvTsvtfh0FI41O67lQtTIQHVOrhQKPuyr0WZ9WG0nt0d99yTNsSoko7J0TLWXI1obYWgwNuaP6xMUWELy</recordid><startdate>20160901</startdate><enddate>20160901</enddate><creator>Xu, Bo Z</creator><creator>Beckman, Scott P</creator><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160901</creationdate><title>Quantum confinement induced band gaps in MgB sub(2) nanosheets</title><author>Xu, Bo Z ; Beckman, Scott P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18841231533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Borides</topic><topic>Energy gaps (solid state)</topic><topic>Magnesium compounds</topic><topic>Nanoelectronics</topic><topic>Nanostructure</topic><topic>Quantum confinement</topic><topic>Semiconductors</topic><topic>Transition metals</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xu, Bo Z</creatorcontrib><creatorcontrib>Beckman, Scott P</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>2d materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xu, Bo Z</au><au>Beckman, Scott P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum confinement induced band gaps in MgB sub(2) nanosheets</atitle><jtitle>2d materials</jtitle><date>2016-09-01</date><risdate>2016</risdate><volume>3</volume><issue>3</issue><spage>031003</spage><epage>031003</epage><pages>031003-031003</pages><issn>2053-1583</issn><eissn>2053-1583</eissn><abstract>The discovery of two-dimensional semiconducting materials, a decade ago, spawned an entire sub-field within solid-state physics that is focused on the development of nanoelectronics. Here we present a new class of semiconducting two-dimensional material based on hexagonal MgB sub(2). Although MgB sub(2) is a semimetal, similar to the other well-studied transition metal diborides, we demonstrate that, unlike the transition metal diborides, thinning MgB sub(2), to create nanosheets, opens a band gap in the density of states. We predict that a 7 A thick MgB sub(2) nanosheet will have a band gap of 0.51 eV. MgB sub(2) nanosheets differ from other two-dimensional semiconductors in that the band gap is introduced by (001) surfaces and is opened by the quantum confinement effect. The implications of these findings are that nanostructured MgB sub(2) is not merely a new composition, but also has intrinsic mechanisms for tuning its electronic properties, which may facilitate the development of nanoelectronics.</abstract><doi>10.1088/2053-1583/3/3/031003</doi></addata></record>
fulltext fulltext
identifier ISSN: 2053-1583
ispartof 2d materials, 2016-09, Vol.3 (3), p.031003-031003
issn 2053-1583
2053-1583
language eng
recordid cdi_proquest_miscellaneous_1884123153
source IOP Publishing Journals; IOPscience extra; Institute of Physics (IOP) Journals - HEAL-Link
subjects Borides
Energy gaps (solid state)
Magnesium compounds
Nanoelectronics
Nanostructure
Quantum confinement
Semiconductors
Transition metals
title Quantum confinement induced band gaps in MgB sub(2) nanosheets
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T20%3A41%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20confinement%20induced%20band%20gaps%20in%20MgB%20sub(2)%20nanosheets&rft.jtitle=2d%20materials&rft.au=Xu,%20Bo%20Z&rft.date=2016-09-01&rft.volume=3&rft.issue=3&rft.spage=031003&rft.epage=031003&rft.pages=031003-031003&rft.issn=2053-1583&rft.eissn=2053-1583&rft_id=info:doi/10.1088/2053-1583/3/3/031003&rft_dat=%3Cproquest%3E1884123153%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884123153&rft_id=info:pmid/&rfr_iscdi=true