Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier
With the rapid development of the World Wide Web, electronic word-of-mouth interaction has made consumers active participants. Nowadays, a large number of reviews posted by the consumers on the Web provide valuable information to other consumers. Such information is highly essential for decision mak...
Gespeichert in:
Veröffentlicht in: | World wide web (Bussum) 2017-03, Vol.20 (2), p.135-154 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 154 |
---|---|
container_issue | 2 |
container_start_page | 135 |
container_title | World wide web (Bussum) |
container_volume | 20 |
creator | Manek, Asha S Shenoy, P Deepa Mohan, M Chandra R, Venugopal K |
description | With the rapid development of the World Wide Web, electronic word-of-mouth interaction has made consumers active participants. Nowadays, a large number of reviews posted by the consumers on the Web provide valuable information to other consumers. Such information is highly essential for decision making and hence popular among the internet users. This information is very valuable not only for prospective consumers to make decisions but also for businesses in predicting the success and sustainability. In this paper, a Gini Index based feature selection method with Support Vector Machine (SVM) classifier is proposed for sentiment classification for large movie review data set. The results show that our Gini Index method has better classification performance in terms of reduced error rate and accuracy. |
doi_str_mv | 10.1007/s11280-015-0381-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884122791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4313366641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-7325e48b51009d3d8e09ec4f50f459f6c58d1f86f133e836bac458d228a5bc043</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1poUnaH9CboJde3Ggky5aPISRpICGHftCb0MqjrYItbzVyujn2n0eLewiBXkaDeN4HpLeqPgD_DJx3pwQgNK85qJpLDfX-VXUEqpM1NCBfl13qtuzq59vqmOiec97KHo6qv2e0Q5dZxjQx3OdkXQ5zZH5OjDDmMJXBbLTjIwViIbLRpi2yaX4IyBKW-YfYQiFu2VWIgV3HAffMo81LwqIYcRVOmH_NQzEN7OuPW-ZGSxR8wPSueuPtSPj-33lSfb-8-Hb-pb65u7o-P7upnexFrjspFDZ6o8pz-0EOGnmPrvGK-0b1vnVKD-B160FK1LLdWNeUKyG0VRvHG3lSfVq9uzT_XpCymQI5HEcbcV7IgNYNCNH1UNCPL9D7eUnlDw5U2_WiV6IrFKyUSzNRQm92KUw2PRrg5lCKWUsxpRRzKMXsS0asGSps3GJ6Zv5v6AnPFZEW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867929527</pqid></control><display><type>article</type><title>Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier</title><source>SpringerLink Journals - AutoHoldings</source><creator>Manek, Asha S ; Shenoy, P Deepa ; Mohan, M Chandra ; R, Venugopal K</creator><creatorcontrib>Manek, Asha S ; Shenoy, P Deepa ; Mohan, M Chandra ; R, Venugopal K</creatorcontrib><description>With the rapid development of the World Wide Web, electronic word-of-mouth interaction has made consumers active participants. Nowadays, a large number of reviews posted by the consumers on the Web provide valuable information to other consumers. Such information is highly essential for decision making and hence popular among the internet users. This information is very valuable not only for prospective consumers to make decisions but also for businesses in predicting the success and sustainability. In this paper, a Gini Index based feature selection method with Support Vector Machine (SVM) classifier is proposed for sentiment classification for large movie review data set. The results show that our Gini Index method has better classification performance in terms of reduced error rate and accuracy.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-015-0381-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Classifiers ; Computer Science ; Consumers ; Database Management ; Electronics ; Information Systems Applications (incl.Internet) ; Operating Systems ; Performance indices ; Support vector machines ; Sustainability ; World Wide Web</subject><ispartof>World wide web (Bussum), 2017-03, Vol.20 (2), p.135-154</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>World Wide Web is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-7325e48b51009d3d8e09ec4f50f459f6c58d1f86f133e836bac458d228a5bc043</citedby><cites>FETCH-LOGICAL-c392t-7325e48b51009d3d8e09ec4f50f459f6c58d1f86f133e836bac458d228a5bc043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-015-0381-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-015-0381-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Manek, Asha S</creatorcontrib><creatorcontrib>Shenoy, P Deepa</creatorcontrib><creatorcontrib>Mohan, M Chandra</creatorcontrib><creatorcontrib>R, Venugopal K</creatorcontrib><title>Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>With the rapid development of the World Wide Web, electronic word-of-mouth interaction has made consumers active participants. Nowadays, a large number of reviews posted by the consumers on the Web provide valuable information to other consumers. Such information is highly essential for decision making and hence popular among the internet users. This information is very valuable not only for prospective consumers to make decisions but also for businesses in predicting the success and sustainability. In this paper, a Gini Index based feature selection method with Support Vector Machine (SVM) classifier is proposed for sentiment classification for large movie review data set. The results show that our Gini Index method has better classification performance in terms of reduced error rate and accuracy.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Computer Science</subject><subject>Consumers</subject><subject>Database Management</subject><subject>Electronics</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Operating Systems</subject><subject>Performance indices</subject><subject>Support vector machines</subject><subject>Sustainability</subject><subject>World Wide Web</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1r3DAQhk1poUnaH9CboJde3Ggky5aPISRpICGHftCb0MqjrYItbzVyujn2n0eLewiBXkaDeN4HpLeqPgD_DJx3pwQgNK85qJpLDfX-VXUEqpM1NCBfl13qtuzq59vqmOiec97KHo6qv2e0Q5dZxjQx3OdkXQ5zZH5OjDDmMJXBbLTjIwViIbLRpi2yaX4IyBKW-YfYQiFu2VWIgV3HAffMo81LwqIYcRVOmH_NQzEN7OuPW-ZGSxR8wPSueuPtSPj-33lSfb-8-Hb-pb65u7o-P7upnexFrjspFDZ6o8pz-0EOGnmPrvGK-0b1vnVKD-B160FK1LLdWNeUKyG0VRvHG3lSfVq9uzT_XpCymQI5HEcbcV7IgNYNCNH1UNCPL9D7eUnlDw5U2_WiV6IrFKyUSzNRQm92KUw2PRrg5lCKWUsxpRRzKMXsS0asGSps3GJ6Zv5v6AnPFZEW</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Manek, Asha S</creator><creator>Shenoy, P Deepa</creator><creator>Mohan, M Chandra</creator><creator>R, Venugopal K</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170301</creationdate><title>Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier</title><author>Manek, Asha S ; Shenoy, P Deepa ; Mohan, M Chandra ; R, Venugopal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-7325e48b51009d3d8e09ec4f50f459f6c58d1f86f133e836bac458d228a5bc043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Computer Science</topic><topic>Consumers</topic><topic>Database Management</topic><topic>Electronics</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Operating Systems</topic><topic>Performance indices</topic><topic>Support vector machines</topic><topic>Sustainability</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manek, Asha S</creatorcontrib><creatorcontrib>Shenoy, P Deepa</creatorcontrib><creatorcontrib>Mohan, M Chandra</creatorcontrib><creatorcontrib>R, Venugopal K</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manek, Asha S</au><au>Shenoy, P Deepa</au><au>Mohan, M Chandra</au><au>R, Venugopal K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>20</volume><issue>2</issue><spage>135</spage><epage>154</epage><pages>135-154</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>With the rapid development of the World Wide Web, electronic word-of-mouth interaction has made consumers active participants. Nowadays, a large number of reviews posted by the consumers on the Web provide valuable information to other consumers. Such information is highly essential for decision making and hence popular among the internet users. This information is very valuable not only for prospective consumers to make decisions but also for businesses in predicting the success and sustainability. In this paper, a Gini Index based feature selection method with Support Vector Machine (SVM) classifier is proposed for sentiment classification for large movie review data set. The results show that our Gini Index method has better classification performance in terms of reduced error rate and accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-015-0381-x</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1386-145X |
ispartof | World wide web (Bussum), 2017-03, Vol.20 (2), p.135-154 |
issn | 1386-145X 1573-1413 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884122791 |
source | SpringerLink Journals - AutoHoldings |
subjects | Classification Classifiers Computer Science Consumers Database Management Electronics Information Systems Applications (incl.Internet) Operating Systems Performance indices Support vector machines Sustainability World Wide Web |
title | Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A15%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aspect%20term%20extraction%20for%20sentiment%20analysis%20in%20large%20movie%20reviews%20using%20Gini%20Index%20feature%20selection%20method%20and%20SVM%20classifier&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Manek,%20Asha%20S&rft.date=2017-03-01&rft.volume=20&rft.issue=2&rft.spage=135&rft.epage=154&rft.pages=135-154&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-015-0381-x&rft_dat=%3Cproquest_cross%3E4313366641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867929527&rft_id=info:pmid/&rfr_iscdi=true |