Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier

With the rapid development of the World Wide Web, electronic word-of-mouth interaction has made consumers active participants. Nowadays, a large number of reviews posted by the consumers on the Web provide valuable information to other consumers. Such information is highly essential for decision mak...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:World wide web (Bussum) 2017-03, Vol.20 (2), p.135-154
Hauptverfasser: Manek, Asha S, Shenoy, P Deepa, Mohan, M Chandra, R, Venugopal K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 154
container_issue 2
container_start_page 135
container_title World wide web (Bussum)
container_volume 20
creator Manek, Asha S
Shenoy, P Deepa
Mohan, M Chandra
R, Venugopal K
description With the rapid development of the World Wide Web, electronic word-of-mouth interaction has made consumers active participants. Nowadays, a large number of reviews posted by the consumers on the Web provide valuable information to other consumers. Such information is highly essential for decision making and hence popular among the internet users. This information is very valuable not only for prospective consumers to make decisions but also for businesses in predicting the success and sustainability. In this paper, a Gini Index based feature selection method with Support Vector Machine (SVM) classifier is proposed for sentiment classification for large movie review data set. The results show that our Gini Index method has better classification performance in terms of reduced error rate and accuracy.
doi_str_mv 10.1007/s11280-015-0381-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884122791</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4313366641</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-7325e48b51009d3d8e09ec4f50f459f6c58d1f86f133e836bac458d228a5bc043</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhk1poUnaH9CboJde3Ggky5aPISRpICGHftCb0MqjrYItbzVyujn2n0eLewiBXkaDeN4HpLeqPgD_DJx3pwQgNK85qJpLDfX-VXUEqpM1NCBfl13qtuzq59vqmOiec97KHo6qv2e0Q5dZxjQx3OdkXQ5zZH5OjDDmMJXBbLTjIwViIbLRpi2yaX4IyBKW-YfYQiFu2VWIgV3HAffMo81LwqIYcRVOmH_NQzEN7OuPW-ZGSxR8wPSueuPtSPj-33lSfb-8-Hb-pb65u7o-P7upnexFrjspFDZ6o8pz-0EOGnmPrvGK-0b1vnVKD-B160FK1LLdWNeUKyG0VRvHG3lSfVq9uzT_XpCymQI5HEcbcV7IgNYNCNH1UNCPL9D7eUnlDw5U2_WiV6IrFKyUSzNRQm92KUw2PRrg5lCKWUsxpRRzKMXsS0asGSps3GJ6Zv5v6AnPFZEW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867929527</pqid></control><display><type>article</type><title>Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier</title><source>SpringerLink Journals - AutoHoldings</source><creator>Manek, Asha S ; Shenoy, P Deepa ; Mohan, M Chandra ; R, Venugopal K</creator><creatorcontrib>Manek, Asha S ; Shenoy, P Deepa ; Mohan, M Chandra ; R, Venugopal K</creatorcontrib><description>With the rapid development of the World Wide Web, electronic word-of-mouth interaction has made consumers active participants. Nowadays, a large number of reviews posted by the consumers on the Web provide valuable information to other consumers. Such information is highly essential for decision making and hence popular among the internet users. This information is very valuable not only for prospective consumers to make decisions but also for businesses in predicting the success and sustainability. In this paper, a Gini Index based feature selection method with Support Vector Machine (SVM) classifier is proposed for sentiment classification for large movie review data set. The results show that our Gini Index method has better classification performance in terms of reduced error rate and accuracy.</description><identifier>ISSN: 1386-145X</identifier><identifier>EISSN: 1573-1413</identifier><identifier>DOI: 10.1007/s11280-015-0381-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Classification ; Classifiers ; Computer Science ; Consumers ; Database Management ; Electronics ; Information Systems Applications (incl.Internet) ; Operating Systems ; Performance indices ; Support vector machines ; Sustainability ; World Wide Web</subject><ispartof>World wide web (Bussum), 2017-03, Vol.20 (2), p.135-154</ispartof><rights>Springer Science+Business Media New York 2016</rights><rights>World Wide Web is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-7325e48b51009d3d8e09ec4f50f459f6c58d1f86f133e836bac458d228a5bc043</citedby><cites>FETCH-LOGICAL-c392t-7325e48b51009d3d8e09ec4f50f459f6c58d1f86f133e836bac458d228a5bc043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11280-015-0381-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11280-015-0381-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Manek, Asha S</creatorcontrib><creatorcontrib>Shenoy, P Deepa</creatorcontrib><creatorcontrib>Mohan, M Chandra</creatorcontrib><creatorcontrib>R, Venugopal K</creatorcontrib><title>Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier</title><title>World wide web (Bussum)</title><addtitle>World Wide Web</addtitle><description>With the rapid development of the World Wide Web, electronic word-of-mouth interaction has made consumers active participants. Nowadays, a large number of reviews posted by the consumers on the Web provide valuable information to other consumers. Such information is highly essential for decision making and hence popular among the internet users. This information is very valuable not only for prospective consumers to make decisions but also for businesses in predicting the success and sustainability. In this paper, a Gini Index based feature selection method with Support Vector Machine (SVM) classifier is proposed for sentiment classification for large movie review data set. The results show that our Gini Index method has better classification performance in terms of reduced error rate and accuracy.</description><subject>Classification</subject><subject>Classifiers</subject><subject>Computer Science</subject><subject>Consumers</subject><subject>Database Management</subject><subject>Electronics</subject><subject>Information Systems Applications (incl.Internet)</subject><subject>Operating Systems</subject><subject>Performance indices</subject><subject>Support vector machines</subject><subject>Sustainability</subject><subject>World Wide Web</subject><issn>1386-145X</issn><issn>1573-1413</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1r3DAQhk1poUnaH9CboJde3Ggky5aPISRpICGHftCb0MqjrYItbzVyujn2n0eLewiBXkaDeN4HpLeqPgD_DJx3pwQgNK85qJpLDfX-VXUEqpM1NCBfl13qtuzq59vqmOiec97KHo6qv2e0Q5dZxjQx3OdkXQ5zZH5OjDDmMJXBbLTjIwViIbLRpi2yaX4IyBKW-YfYQiFu2VWIgV3HAffMo81LwqIYcRVOmH_NQzEN7OuPW-ZGSxR8wPSueuPtSPj-33lSfb-8-Hb-pb65u7o-P7upnexFrjspFDZ6o8pz-0EOGnmPrvGK-0b1vnVKD-B160FK1LLdWNeUKyG0VRvHG3lSfVq9uzT_XpCymQI5HEcbcV7IgNYNCNH1UNCPL9D7eUnlDw5U2_WiV6IrFKyUSzNRQm92KUw2PRrg5lCKWUsxpRRzKMXsS0asGSps3GJ6Zv5v6AnPFZEW</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Manek, Asha S</creator><creator>Shenoy, P Deepa</creator><creator>Mohan, M Chandra</creator><creator>R, Venugopal K</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope></search><sort><creationdate>20170301</creationdate><title>Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier</title><author>Manek, Asha S ; Shenoy, P Deepa ; Mohan, M Chandra ; R, Venugopal K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-7325e48b51009d3d8e09ec4f50f459f6c58d1f86f133e836bac458d228a5bc043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Classification</topic><topic>Classifiers</topic><topic>Computer Science</topic><topic>Consumers</topic><topic>Database Management</topic><topic>Electronics</topic><topic>Information Systems Applications (incl.Internet)</topic><topic>Operating Systems</topic><topic>Performance indices</topic><topic>Support vector machines</topic><topic>Sustainability</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Manek, Asha S</creatorcontrib><creatorcontrib>Shenoy, P Deepa</creatorcontrib><creatorcontrib>Mohan, M Chandra</creatorcontrib><creatorcontrib>R, Venugopal K</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>World wide web (Bussum)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Manek, Asha S</au><au>Shenoy, P Deepa</au><au>Mohan, M Chandra</au><au>R, Venugopal K</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier</atitle><jtitle>World wide web (Bussum)</jtitle><stitle>World Wide Web</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>20</volume><issue>2</issue><spage>135</spage><epage>154</epage><pages>135-154</pages><issn>1386-145X</issn><eissn>1573-1413</eissn><abstract>With the rapid development of the World Wide Web, electronic word-of-mouth interaction has made consumers active participants. Nowadays, a large number of reviews posted by the consumers on the Web provide valuable information to other consumers. Such information is highly essential for decision making and hence popular among the internet users. This information is very valuable not only for prospective consumers to make decisions but also for businesses in predicting the success and sustainability. In this paper, a Gini Index based feature selection method with Support Vector Machine (SVM) classifier is proposed for sentiment classification for large movie review data set. The results show that our Gini Index method has better classification performance in terms of reduced error rate and accuracy.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11280-015-0381-x</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1386-145X
ispartof World wide web (Bussum), 2017-03, Vol.20 (2), p.135-154
issn 1386-145X
1573-1413
language eng
recordid cdi_proquest_miscellaneous_1884122791
source SpringerLink Journals - AutoHoldings
subjects Classification
Classifiers
Computer Science
Consumers
Database Management
Electronics
Information Systems Applications (incl.Internet)
Operating Systems
Performance indices
Support vector machines
Sustainability
World Wide Web
title Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T18%3A15%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aspect%20term%20extraction%20for%20sentiment%20analysis%20in%20large%20movie%20reviews%20using%20Gini%20Index%20feature%20selection%20method%20and%20SVM%20classifier&rft.jtitle=World%20wide%20web%20(Bussum)&rft.au=Manek,%20Asha%20S&rft.date=2017-03-01&rft.volume=20&rft.issue=2&rft.spage=135&rft.epage=154&rft.pages=135-154&rft.issn=1386-145X&rft.eissn=1573-1413&rft_id=info:doi/10.1007/s11280-015-0381-x&rft_dat=%3Cproquest_cross%3E4313366641%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867929527&rft_id=info:pmid/&rfr_iscdi=true