Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots

The Soil Conservation Service curve number (SCS-CN) method, also known as the Natural Resources Conservation Service curve number (NRCS-CN) method, is popular for computing the volume of direct surface runoff for a given rainfall event. The performance of the SCS-CN method, based on large rainfall (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrogeology journal 2017-02, Vol.25 (1), p.151-167
Hauptverfasser: Lal, Mohan, Mishra, S. K., Pandey, Ashish, Pandey, R. P., Meena, P. K., Chaudhary, Anubhav, Jha, Ranjit Kumar, Shreevastava, Ajit Kumar, Kumar, Yogendra
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 167
container_issue 1
container_start_page 151
container_title Hydrogeology journal
container_volume 25
creator Lal, Mohan
Mishra, S. K.
Pandey, Ashish
Pandey, R. P.
Meena, P. K.
Chaudhary, Anubhav
Jha, Ranjit Kumar
Shreevastava, Ajit Kumar
Kumar, Yogendra
description The Soil Conservation Service curve number (SCS-CN) method, also known as the Natural Resources Conservation Service curve number (NRCS-CN) method, is popular for computing the volume of direct surface runoff for a given rainfall event. The performance of the SCS-CN method, based on large rainfall ( P ) and runoff ( Q ) datasets of United States watersheds, is evaluated using a large dataset of natural storm events from 27 agricultural plots in India. On the whole, the CN estimates from the National Engineering Handbook (chapter 4) tables do not match those derived from the observed P and Q datasets. As a result, the runoff prediction using former CNs was poor for the data of 22 (out of 24) plots. However, the match was little better for higher CN values, consistent with the general notion that the existing SCS-CN method performs better for high rainfall–runoff (high CN) events. Infiltration capacity (fc) was the main explanatory variable for runoff (or CN) production in study plots as it exhibited the expected inverse relationship between CN and fc. The plot-data optimization yielded initial abstraction coefficient ( λ ) values from 0 to 0.659 for the ordered dataset and 0 to 0.208 for the natural dataset (with 0 as the most frequent value). Mean and median λ values were, respectively, 0.030 and 0 for the natural rainfall–runoff dataset and 0.108 and 0 for the ordered rainfall–runoff dataset. Runoff estimation was very sensitive to λ and it improved consistently as λ changed from 0.2 to 0.03.
doi_str_mv 10.1007/s10040-016-1460-5
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884122515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884122515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-ab408d0aa98e88dd840c86651ab2369f089b7b130c07817896ead9c3ef50334e3</originalsourceid><addsrcrecordid>eNqNkU1LxDAQhoMoqKs_wFvAi5dqpmma9CiLXyB4WD2HNE27XdJmTZoF_71Z60EEwcvMMPPMMDMvQhdAroEQfhOSLUhGoMygKEnGDtAJFJSlDOOHXzFkOfDiGJ2GsCGJBk5PUHe3UzaqqXcjdi2e1gavXG_x0o3B-N1cWKWo1wbr6HcGj3GojceDmdaucdZ1HziGfuxwoyaFW-8GrDrf62in6JXFW-umcIaOWmWDOf_2C_R2f_e6fMyeXx6elrfPmaYinzJVF0Q0RKlKGCGaRhREi7JkoOqcllVLRFXzGijRhAvgoiqNaipNTcsIpYWhC3Q1z9169x5NmOTQB22sVaNxMUgQooA8Z8D-gXIuGIH0ugW6_IVuXPRjOiRRJa8oUFYmCmZKexeCN63c-n5Q_kMCkXuV5KySTCrJvUpyv0Q-94TEjp3xPyb_2fQJNxWUlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867931356</pqid></control><display><type>article</type><title>Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lal, Mohan ; Mishra, S. K. ; Pandey, Ashish ; Pandey, R. P. ; Meena, P. K. ; Chaudhary, Anubhav ; Jha, Ranjit Kumar ; Shreevastava, Ajit Kumar ; Kumar, Yogendra</creator><creatorcontrib>Lal, Mohan ; Mishra, S. K. ; Pandey, Ashish ; Pandey, R. P. ; Meena, P. K. ; Chaudhary, Anubhav ; Jha, Ranjit Kumar ; Shreevastava, Ajit Kumar ; Kumar, Yogendra</creatorcontrib><description>The Soil Conservation Service curve number (SCS-CN) method, also known as the Natural Resources Conservation Service curve number (NRCS-CN) method, is popular for computing the volume of direct surface runoff for a given rainfall event. The performance of the SCS-CN method, based on large rainfall ( P ) and runoff ( Q ) datasets of United States watersheds, is evaluated using a large dataset of natural storm events from 27 agricultural plots in India. On the whole, the CN estimates from the National Engineering Handbook (chapter 4) tables do not match those derived from the observed P and Q datasets. As a result, the runoff prediction using former CNs was poor for the data of 22 (out of 24) plots. However, the match was little better for higher CN values, consistent with the general notion that the existing SCS-CN method performs better for high rainfall–runoff (high CN) events. Infiltration capacity (fc) was the main explanatory variable for runoff (or CN) production in study plots as it exhibited the expected inverse relationship between CN and fc. The plot-data optimization yielded initial abstraction coefficient ( λ ) values from 0 to 0.659 for the ordered dataset and 0 to 0.208 for the natural dataset (with 0 as the most frequent value). Mean and median λ values were, respectively, 0.030 and 0 for the natural rainfall–runoff dataset and 0.108 and 0 for the ordered rainfall–runoff dataset. Runoff estimation was very sensitive to λ and it improved consistently as λ changed from 0.2 to 0.03.</description><identifier>ISSN: 1431-2174</identifier><identifier>EISSN: 1435-0157</identifier><identifier>DOI: 10.1007/s10040-016-1460-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Agricultural practices ; Agriculture ; Aquatic Pollution ; Earth and Environmental Science ; Earth Sciences ; Geoengineering ; Geology ; Geophysics/Geodesy ; Hydrogeology ; Hydrology ; Hydrology/Water Resources ; Infiltration capacity ; Natural resources ; Rainfall ; Rainfall runoff relationships ; Resource conservation ; Runoff ; Soil conservation ; Surface runoff ; Waste Water Technology ; Water Management ; Water Pollution Control ; Water Quality/Water Pollution ; Watersheds</subject><ispartof>Hydrogeology journal, 2017-02, Vol.25 (1), p.151-167</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Hydrogeology Journal is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-ab408d0aa98e88dd840c86651ab2369f089b7b130c07817896ead9c3ef50334e3</citedby><cites>FETCH-LOGICAL-c382t-ab408d0aa98e88dd840c86651ab2369f089b7b130c07817896ead9c3ef50334e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10040-016-1460-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10040-016-1460-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Lal, Mohan</creatorcontrib><creatorcontrib>Mishra, S. K.</creatorcontrib><creatorcontrib>Pandey, Ashish</creatorcontrib><creatorcontrib>Pandey, R. P.</creatorcontrib><creatorcontrib>Meena, P. K.</creatorcontrib><creatorcontrib>Chaudhary, Anubhav</creatorcontrib><creatorcontrib>Jha, Ranjit Kumar</creatorcontrib><creatorcontrib>Shreevastava, Ajit Kumar</creatorcontrib><creatorcontrib>Kumar, Yogendra</creatorcontrib><title>Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots</title><title>Hydrogeology journal</title><addtitle>Hydrogeol J</addtitle><description>The Soil Conservation Service curve number (SCS-CN) method, also known as the Natural Resources Conservation Service curve number (NRCS-CN) method, is popular for computing the volume of direct surface runoff for a given rainfall event. The performance of the SCS-CN method, based on large rainfall ( P ) and runoff ( Q ) datasets of United States watersheds, is evaluated using a large dataset of natural storm events from 27 agricultural plots in India. On the whole, the CN estimates from the National Engineering Handbook (chapter 4) tables do not match those derived from the observed P and Q datasets. As a result, the runoff prediction using former CNs was poor for the data of 22 (out of 24) plots. However, the match was little better for higher CN values, consistent with the general notion that the existing SCS-CN method performs better for high rainfall–runoff (high CN) events. Infiltration capacity (fc) was the main explanatory variable for runoff (or CN) production in study plots as it exhibited the expected inverse relationship between CN and fc. The plot-data optimization yielded initial abstraction coefficient ( λ ) values from 0 to 0.659 for the ordered dataset and 0 to 0.208 for the natural dataset (with 0 as the most frequent value). Mean and median λ values were, respectively, 0.030 and 0 for the natural rainfall–runoff dataset and 0.108 and 0 for the ordered rainfall–runoff dataset. Runoff estimation was very sensitive to λ and it improved consistently as λ changed from 0.2 to 0.03.</description><subject>Agricultural practices</subject><subject>Agriculture</subject><subject>Aquatic Pollution</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geoengineering</subject><subject>Geology</subject><subject>Geophysics/Geodesy</subject><subject>Hydrogeology</subject><subject>Hydrology</subject><subject>Hydrology/Water Resources</subject><subject>Infiltration capacity</subject><subject>Natural resources</subject><subject>Rainfall</subject><subject>Rainfall runoff relationships</subject><subject>Resource conservation</subject><subject>Runoff</subject><subject>Soil conservation</subject><subject>Surface runoff</subject><subject>Waste Water Technology</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Quality/Water Pollution</subject><subject>Watersheds</subject><issn>1431-2174</issn><issn>1435-0157</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNkU1LxDAQhoMoqKs_wFvAi5dqpmma9CiLXyB4WD2HNE27XdJmTZoF_71Z60EEwcvMMPPMMDMvQhdAroEQfhOSLUhGoMygKEnGDtAJFJSlDOOHXzFkOfDiGJ2GsCGJBk5PUHe3UzaqqXcjdi2e1gavXG_x0o3B-N1cWKWo1wbr6HcGj3GojceDmdaucdZ1HziGfuxwoyaFW-8GrDrf62in6JXFW-umcIaOWmWDOf_2C_R2f_e6fMyeXx6elrfPmaYinzJVF0Q0RKlKGCGaRhREi7JkoOqcllVLRFXzGijRhAvgoiqNaipNTcsIpYWhC3Q1z9169x5NmOTQB22sVaNxMUgQooA8Z8D-gXIuGIH0ugW6_IVuXPRjOiRRJa8oUFYmCmZKexeCN63c-n5Q_kMCkXuV5KySTCrJvUpyv0Q-94TEjp3xPyb_2fQJNxWUlA</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Lal, Mohan</creator><creator>Mishra, S. K.</creator><creator>Pandey, Ashish</creator><creator>Pandey, R. P.</creator><creator>Meena, P. K.</creator><creator>Chaudhary, Anubhav</creator><creator>Jha, Ranjit Kumar</creator><creator>Shreevastava, Ajit Kumar</creator><creator>Kumar, Yogendra</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7ST</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>M2P</scope><scope>M7S</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>SOI</scope></search><sort><creationdate>20170201</creationdate><title>Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots</title><author>Lal, Mohan ; Mishra, S. K. ; Pandey, Ashish ; Pandey, R. P. ; Meena, P. K. ; Chaudhary, Anubhav ; Jha, Ranjit Kumar ; Shreevastava, Ajit Kumar ; Kumar, Yogendra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-ab408d0aa98e88dd840c86651ab2369f089b7b130c07817896ead9c3ef50334e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Agricultural practices</topic><topic>Agriculture</topic><topic>Aquatic Pollution</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geoengineering</topic><topic>Geology</topic><topic>Geophysics/Geodesy</topic><topic>Hydrogeology</topic><topic>Hydrology</topic><topic>Hydrology/Water Resources</topic><topic>Infiltration capacity</topic><topic>Natural resources</topic><topic>Rainfall</topic><topic>Rainfall runoff relationships</topic><topic>Resource conservation</topic><topic>Runoff</topic><topic>Soil conservation</topic><topic>Surface runoff</topic><topic>Waste Water Technology</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Quality/Water Pollution</topic><topic>Watersheds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lal, Mohan</creatorcontrib><creatorcontrib>Mishra, S. K.</creatorcontrib><creatorcontrib>Pandey, Ashish</creatorcontrib><creatorcontrib>Pandey, R. P.</creatorcontrib><creatorcontrib>Meena, P. K.</creatorcontrib><creatorcontrib>Chaudhary, Anubhav</creatorcontrib><creatorcontrib>Jha, Ranjit Kumar</creatorcontrib><creatorcontrib>Shreevastava, Ajit Kumar</creatorcontrib><creatorcontrib>Kumar, Yogendra</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Environment Abstracts</collection><jtitle>Hydrogeology journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lal, Mohan</au><au>Mishra, S. K.</au><au>Pandey, Ashish</au><au>Pandey, R. P.</au><au>Meena, P. K.</au><au>Chaudhary, Anubhav</au><au>Jha, Ranjit Kumar</au><au>Shreevastava, Ajit Kumar</au><au>Kumar, Yogendra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots</atitle><jtitle>Hydrogeology journal</jtitle><stitle>Hydrogeol J</stitle><date>2017-02-01</date><risdate>2017</risdate><volume>25</volume><issue>1</issue><spage>151</spage><epage>167</epage><pages>151-167</pages><issn>1431-2174</issn><eissn>1435-0157</eissn><abstract>The Soil Conservation Service curve number (SCS-CN) method, also known as the Natural Resources Conservation Service curve number (NRCS-CN) method, is popular for computing the volume of direct surface runoff for a given rainfall event. The performance of the SCS-CN method, based on large rainfall ( P ) and runoff ( Q ) datasets of United States watersheds, is evaluated using a large dataset of natural storm events from 27 agricultural plots in India. On the whole, the CN estimates from the National Engineering Handbook (chapter 4) tables do not match those derived from the observed P and Q datasets. As a result, the runoff prediction using former CNs was poor for the data of 22 (out of 24) plots. However, the match was little better for higher CN values, consistent with the general notion that the existing SCS-CN method performs better for high rainfall–runoff (high CN) events. Infiltration capacity (fc) was the main explanatory variable for runoff (or CN) production in study plots as it exhibited the expected inverse relationship between CN and fc. The plot-data optimization yielded initial abstraction coefficient ( λ ) values from 0 to 0.659 for the ordered dataset and 0 to 0.208 for the natural dataset (with 0 as the most frequent value). Mean and median λ values were, respectively, 0.030 and 0 for the natural rainfall–runoff dataset and 0.108 and 0 for the ordered rainfall–runoff dataset. Runoff estimation was very sensitive to λ and it improved consistently as λ changed from 0.2 to 0.03.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10040-016-1460-5</doi><tpages>17</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1431-2174
ispartof Hydrogeology journal, 2017-02, Vol.25 (1), p.151-167
issn 1431-2174
1435-0157
language eng
recordid cdi_proquest_miscellaneous_1884122515
source SpringerLink Journals - AutoHoldings
subjects Agricultural practices
Agriculture
Aquatic Pollution
Earth and Environmental Science
Earth Sciences
Geoengineering
Geology
Geophysics/Geodesy
Hydrogeology
Hydrology
Hydrology/Water Resources
Infiltration capacity
Natural resources
Rainfall
Rainfall runoff relationships
Resource conservation
Runoff
Soil conservation
Surface runoff
Waste Water Technology
Water Management
Water Pollution Control
Water Quality/Water Pollution
Watersheds
title Evaluation of the Soil Conservation Service curve number methodology using data from agricultural plots
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Evaluation%20of%20the%20Soil%20Conservation%20Service%20curve%20number%20methodology%20using%20data%20from%20agricultural%20plots&rft.jtitle=Hydrogeology%20journal&rft.au=Lal,%20Mohan&rft.date=2017-02-01&rft.volume=25&rft.issue=1&rft.spage=151&rft.epage=167&rft.pages=151-167&rft.issn=1431-2174&rft.eissn=1435-0157&rft_id=info:doi/10.1007/s10040-016-1460-5&rft_dat=%3Cproquest_cross%3E1884122515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867931356&rft_id=info:pmid/&rfr_iscdi=true