FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS
The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its i...
Gespeichert in:
Veröffentlicht in: | The Astronomical journal 2017-02, Vol.153 (2), p.86-86 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 86 |
---|---|
container_issue | 2 |
container_start_page | 86 |
container_title | The Astronomical journal |
container_volume | 153 |
creator | Morley, Caroline V. Knutson, Heather Line, Michael Fortney, Jonathan J. Thorngren, Daniel Marley, Mark S. Teal, Dillon Lupu, Roxana |
description | The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 m, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300-350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature Tint ∼ 300-350 K, we find a dissipation factor Q′ ∼ 2 × 105-106, larger than Neptune's Q′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity. |
doi_str_mv | 10.3847/1538-3881/153/2/86 |
format | Article |
fullrecord | <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884120029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884120029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-5705081229d2019861546a961b3fecd38394c023c3778fb408e2cdf4eaa01413</originalsourceid><addsrcrecordid>eNqNkcuO0zAUhi0EEmXgBVhZYsNiMvUtjsMuJG4blAtKPLC0Mq4jUnWaTpwueAceepKWGTYIsfLR70-fjs4PwHuMbqhgwRL7VHhUCDxPS7IU_AVYPIcvwQIhxDxOfP4avHFuhxDGArEF-LUqq-9RlcCoSGBafJNVLWFeJjJLizUsV1BtJJR5WtdpWZwhVUVF_RTUX2Wsqtt8JtdfIKP886ezplbpOlKzI5cqyqAsqjTe5LJQ11ClyZRs5Pn_-iyNs_I2qd-CV22zd_bd7_cKqJVU8cbLynUaR5lnfCxGzw-QjwQmJNwShEPBsc94E3J8R1trtlTQkBlEqKFBINo7hoQlZtsy2zQIM0yvwIeLtndjp53pRmt-mP5wsGbUhHBOBScT9fFCHYf-4WTdqO87Z-x-3xxsf3IaC8EwQYiE_4FOixA_8PmEkgtqht65wbb6OHT3zfBTY6TnKvXcmp5bmydNtOB_Fu76o971p-EwXUc3u2dCH7ftRN38hfqH9hH1DJzI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877825756</pqid></control><display><type>article</type><title>FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS</title><source>IOP Publishing Free Content</source><creator>Morley, Caroline V. ; Knutson, Heather ; Line, Michael ; Fortney, Jonathan J. ; Thorngren, Daniel ; Marley, Mark S. ; Teal, Dillon ; Lupu, Roxana</creator><creatorcontrib>Morley, Caroline V. ; Knutson, Heather ; Line, Michael ; Fortney, Jonathan J. ; Thorngren, Daniel ; Marley, Mark S. ; Teal, Dillon ; Lupu, Roxana</creatorcontrib><description>The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 m, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300-350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature Tint ∼ 300-350 K, we find a dissipation factor Q′ ∼ 2 × 105-106, larger than Neptune's Q′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.</description><identifier>ISSN: 0004-6256</identifier><identifier>ISSN: 1538-3881</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/153/2/86</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; CLOUDS ; DISSIPATION FACTOR ; EMISSION ; Enrichment ; Extrasolar planets ; HEATING ; LUMINOSITY ; MASS ; METALLICITY ; METALS ; NEPTUNE PLANET ; ORBITS ; PHOTOCHEMISTRY ; PHOTOMETRY ; planets and satellites: atmospheres ; planets and satellites: composition ; planets and satellites: gaseous planets ; Retrieval ; SATELLITE ATMOSPHERES ; SATELLITES ; TELESCOPES ; Thermal emission ; Tidal effects ; WAVELENGTHS</subject><ispartof>The Astronomical journal, 2017-02, Vol.153 (2), p.86-86</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-5705081229d2019861546a961b3fecd38394c023c3778fb408e2cdf4eaa01413</citedby><cites>FETCH-LOGICAL-c518t-5705081229d2019861546a961b3fecd38394c023c3778fb408e2cdf4eaa01413</cites><orcidid>0000-0002-9843-4354 ; 0000-0002-5251-2943 ; 0000-0002-2338-476X ; 0000-0002-5113-8558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/153/2/86/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27915,27916,38859,38881,53831,53858</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/153/2/86$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22663862$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Morley, Caroline V.</creatorcontrib><creatorcontrib>Knutson, Heather</creatorcontrib><creatorcontrib>Line, Michael</creatorcontrib><creatorcontrib>Fortney, Jonathan J.</creatorcontrib><creatorcontrib>Thorngren, Daniel</creatorcontrib><creatorcontrib>Marley, Mark S.</creatorcontrib><creatorcontrib>Teal, Dillon</creatorcontrib><creatorcontrib>Lupu, Roxana</creatorcontrib><title>FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 m, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300-350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature Tint ∼ 300-350 K, we find a dissipation factor Q′ ∼ 2 × 105-106, larger than Neptune's Q′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.</description><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>CLOUDS</subject><subject>DISSIPATION FACTOR</subject><subject>EMISSION</subject><subject>Enrichment</subject><subject>Extrasolar planets</subject><subject>HEATING</subject><subject>LUMINOSITY</subject><subject>MASS</subject><subject>METALLICITY</subject><subject>METALS</subject><subject>NEPTUNE PLANET</subject><subject>ORBITS</subject><subject>PHOTOCHEMISTRY</subject><subject>PHOTOMETRY</subject><subject>planets and satellites: atmospheres</subject><subject>planets and satellites: composition</subject><subject>planets and satellites: gaseous planets</subject><subject>Retrieval</subject><subject>SATELLITE ATMOSPHERES</subject><subject>SATELLITES</subject><subject>TELESCOPES</subject><subject>Thermal emission</subject><subject>Tidal effects</subject><subject>WAVELENGTHS</subject><issn>0004-6256</issn><issn>1538-3881</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkcuO0zAUhi0EEmXgBVhZYsNiMvUtjsMuJG4blAtKPLC0Mq4jUnWaTpwueAceepKWGTYIsfLR70-fjs4PwHuMbqhgwRL7VHhUCDxPS7IU_AVYPIcvwQIhxDxOfP4avHFuhxDGArEF-LUqq-9RlcCoSGBafJNVLWFeJjJLizUsV1BtJJR5WtdpWZwhVUVF_RTUX2Wsqtt8JtdfIKP886ezplbpOlKzI5cqyqAsqjTe5LJQ11ClyZRs5Pn_-iyNs_I2qd-CV22zd_bd7_cKqJVU8cbLynUaR5lnfCxGzw-QjwQmJNwShEPBsc94E3J8R1trtlTQkBlEqKFBINo7hoQlZtsy2zQIM0yvwIeLtndjp53pRmt-mP5wsGbUhHBOBScT9fFCHYf-4WTdqO87Z-x-3xxsf3IaC8EwQYiE_4FOixA_8PmEkgtqht65wbb6OHT3zfBTY6TnKvXcmp5bmydNtOB_Fu76o971p-EwXUc3u2dCH7ftRN38hfqH9hH1DJzI</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Morley, Caroline V.</creator><creator>Knutson, Heather</creator><creator>Line, Michael</creator><creator>Fortney, Jonathan J.</creator><creator>Thorngren, Daniel</creator><creator>Marley, Mark S.</creator><creator>Teal, Dillon</creator><creator>Lupu, Roxana</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9843-4354</orcidid><orcidid>https://orcid.org/0000-0002-5251-2943</orcidid><orcidid>https://orcid.org/0000-0002-2338-476X</orcidid><orcidid>https://orcid.org/0000-0002-5113-8558</orcidid></search><sort><creationdate>20170201</creationdate><title>FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS</title><author>Morley, Caroline V. ; Knutson, Heather ; Line, Michael ; Fortney, Jonathan J. ; Thorngren, Daniel ; Marley, Mark S. ; Teal, Dillon ; Lupu, Roxana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-5705081229d2019861546a961b3fecd38394c023c3778fb408e2cdf4eaa01413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>CLOUDS</topic><topic>DISSIPATION FACTOR</topic><topic>EMISSION</topic><topic>Enrichment</topic><topic>Extrasolar planets</topic><topic>HEATING</topic><topic>LUMINOSITY</topic><topic>MASS</topic><topic>METALLICITY</topic><topic>METALS</topic><topic>NEPTUNE PLANET</topic><topic>ORBITS</topic><topic>PHOTOCHEMISTRY</topic><topic>PHOTOMETRY</topic><topic>planets and satellites: atmospheres</topic><topic>planets and satellites: composition</topic><topic>planets and satellites: gaseous planets</topic><topic>Retrieval</topic><topic>SATELLITE ATMOSPHERES</topic><topic>SATELLITES</topic><topic>TELESCOPES</topic><topic>Thermal emission</topic><topic>Tidal effects</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morley, Caroline V.</creatorcontrib><creatorcontrib>Knutson, Heather</creatorcontrib><creatorcontrib>Line, Michael</creatorcontrib><creatorcontrib>Fortney, Jonathan J.</creatorcontrib><creatorcontrib>Thorngren, Daniel</creatorcontrib><creatorcontrib>Marley, Mark S.</creatorcontrib><creatorcontrib>Teal, Dillon</creatorcontrib><creatorcontrib>Lupu, Roxana</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morley, Caroline V.</au><au>Knutson, Heather</au><au>Line, Michael</au><au>Fortney, Jonathan J.</au><au>Thorngren, Daniel</au><au>Marley, Mark S.</au><au>Teal, Dillon</au><au>Lupu, Roxana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>153</volume><issue>2</issue><spage>86</spage><epage>86</epage><pages>86-86</pages><issn>0004-6256</issn><issn>1538-3881</issn><eissn>1538-3881</eissn><abstract>The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 m, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300-350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature Tint ∼ 300-350 K, we find a dissipation factor Q′ ∼ 2 × 105-106, larger than Neptune's Q′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/153/2/86</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9843-4354</orcidid><orcidid>https://orcid.org/0000-0002-5251-2943</orcidid><orcidid>https://orcid.org/0000-0002-2338-476X</orcidid><orcidid>https://orcid.org/0000-0002-5113-8558</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0004-6256 |
ispartof | The Astronomical journal, 2017-02, Vol.153 (2), p.86-86 |
issn | 0004-6256 1538-3881 1538-3881 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884120029 |
source | IOP Publishing Free Content |
subjects | ASTROPHYSICS, COSMOLOGY AND ASTRONOMY CLOUDS DISSIPATION FACTOR EMISSION Enrichment Extrasolar planets HEATING LUMINOSITY MASS METALLICITY METALS NEPTUNE PLANET ORBITS PHOTOCHEMISTRY PHOTOMETRY planets and satellites: atmospheres planets and satellites: composition planets and satellites: gaseous planets Retrieval SATELLITE ATMOSPHERES SATELLITES TELESCOPES Thermal emission Tidal effects WAVELENGTHS |
title | FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FORWARD%20AND%20INVERSE%20MODELING%20OF%20THE%20EMISSION%20AND%20TRANSMISSION%20SPECTRUM%20OF%20GJ%20436B:%20INVESTIGATING%20METAL%20ENRICHMENT,%20TIDAL%20HEATING,%20AND%20CLOUDS&rft.jtitle=The%20Astronomical%20journal&rft.au=Morley,%20Caroline%20V.&rft.date=2017-02-01&rft.volume=153&rft.issue=2&rft.spage=86&rft.epage=86&rft.pages=86-86&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/153/2/86&rft_dat=%3Cproquest_O3W%3E1884120029%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1877825756&rft_id=info:pmid/&rfr_iscdi=true |