FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS

The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astronomical journal 2017-02, Vol.153 (2), p.86-86
Hauptverfasser: Morley, Caroline V., Knutson, Heather, Line, Michael, Fortney, Jonathan J., Thorngren, Daniel, Marley, Mark S., Teal, Dillon, Lupu, Roxana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 86
container_issue 2
container_start_page 86
container_title The Astronomical journal
container_volume 153
creator Morley, Caroline V.
Knutson, Heather
Line, Michael
Fortney, Jonathan J.
Thorngren, Daniel
Marley, Mark S.
Teal, Dillon
Lupu, Roxana
description The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 m, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300-350 K, and disequilibrium chemistry. High metal enrichments (>600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature Tint ∼ 300-350 K, we find a dissipation factor Q′ ∼ 2 × 105-106, larger than Neptune's Q′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.
doi_str_mv 10.3847/1538-3881/153/2/86
format Article
fullrecord <record><control><sourceid>proquest_O3W</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884120029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884120029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c518t-5705081229d2019861546a961b3fecd38394c023c3778fb408e2cdf4eaa01413</originalsourceid><addsrcrecordid>eNqNkcuO0zAUhi0EEmXgBVhZYsNiMvUtjsMuJG4blAtKPLC0Mq4jUnWaTpwueAceepKWGTYIsfLR70-fjs4PwHuMbqhgwRL7VHhUCDxPS7IU_AVYPIcvwQIhxDxOfP4avHFuhxDGArEF-LUqq-9RlcCoSGBafJNVLWFeJjJLizUsV1BtJJR5WtdpWZwhVUVF_RTUX2Wsqtt8JtdfIKP886ezplbpOlKzI5cqyqAsqjTe5LJQ11ClyZRs5Pn_-iyNs_I2qd-CV22zd_bd7_cKqJVU8cbLynUaR5lnfCxGzw-QjwQmJNwShEPBsc94E3J8R1trtlTQkBlEqKFBINo7hoQlZtsy2zQIM0yvwIeLtndjp53pRmt-mP5wsGbUhHBOBScT9fFCHYf-4WTdqO87Z-x-3xxsf3IaC8EwQYiE_4FOixA_8PmEkgtqht65wbb6OHT3zfBTY6TnKvXcmp5bmydNtOB_Fu76o971p-EwXUc3u2dCH7ftRN38hfqH9hH1DJzI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1877825756</pqid></control><display><type>article</type><title>FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS</title><source>IOP Publishing Free Content</source><creator>Morley, Caroline V. ; Knutson, Heather ; Line, Michael ; Fortney, Jonathan J. ; Thorngren, Daniel ; Marley, Mark S. ; Teal, Dillon ; Lupu, Roxana</creator><creatorcontrib>Morley, Caroline V. ; Knutson, Heather ; Line, Michael ; Fortney, Jonathan J. ; Thorngren, Daniel ; Marley, Mark S. ; Teal, Dillon ; Lupu, Roxana</creatorcontrib><description>The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 m, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300-350 K, and disequilibrium chemistry. High metal enrichments (&gt;600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature Tint ∼ 300-350 K, we find a dissipation factor Q′ ∼ 2 × 105-106, larger than Neptune's Q′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.</description><identifier>ISSN: 0004-6256</identifier><identifier>ISSN: 1538-3881</identifier><identifier>EISSN: 1538-3881</identifier><identifier>DOI: 10.3847/1538-3881/153/2/86</identifier><language>eng</language><publisher>United States: The American Astronomical Society</publisher><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ; CLOUDS ; DISSIPATION FACTOR ; EMISSION ; Enrichment ; Extrasolar planets ; HEATING ; LUMINOSITY ; MASS ; METALLICITY ; METALS ; NEPTUNE PLANET ; ORBITS ; PHOTOCHEMISTRY ; PHOTOMETRY ; planets and satellites: atmospheres ; planets and satellites: composition ; planets and satellites: gaseous planets ; Retrieval ; SATELLITE ATMOSPHERES ; SATELLITES ; TELESCOPES ; Thermal emission ; Tidal effects ; WAVELENGTHS</subject><ispartof>The Astronomical journal, 2017-02, Vol.153 (2), p.86-86</ispartof><rights>2017. The American Astronomical Society. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c518t-5705081229d2019861546a961b3fecd38394c023c3778fb408e2cdf4eaa01413</citedby><cites>FETCH-LOGICAL-c518t-5705081229d2019861546a961b3fecd38394c023c3778fb408e2cdf4eaa01413</cites><orcidid>0000-0002-9843-4354 ; 0000-0002-5251-2943 ; 0000-0002-2338-476X ; 0000-0002-5113-8558</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/153/2/86/pdf$$EPDF$$P50$$Giop$$H</linktopdf><link.rule.ids>230,314,780,784,885,27915,27916,38859,38881,53831,53858</link.rule.ids><linktorsrc>$$Uhttps://iopscience.iop.org/article/10.3847/1538-3881/153/2/86$$EView_record_in_IOP_Publishing$$FView_record_in_$$GIOP_Publishing</linktorsrc><backlink>$$Uhttps://www.osti.gov/biblio/22663862$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Morley, Caroline V.</creatorcontrib><creatorcontrib>Knutson, Heather</creatorcontrib><creatorcontrib>Line, Michael</creatorcontrib><creatorcontrib>Fortney, Jonathan J.</creatorcontrib><creatorcontrib>Thorngren, Daniel</creatorcontrib><creatorcontrib>Marley, Mark S.</creatorcontrib><creatorcontrib>Teal, Dillon</creatorcontrib><creatorcontrib>Lupu, Roxana</creatorcontrib><title>FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS</title><title>The Astronomical journal</title><addtitle>AJ</addtitle><addtitle>Astron. J</addtitle><description>The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 m, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300-350 K, and disequilibrium chemistry. High metal enrichments (&gt;600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature Tint ∼ 300-350 K, we find a dissipation factor Q′ ∼ 2 × 105-106, larger than Neptune's Q′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.</description><subject>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</subject><subject>CLOUDS</subject><subject>DISSIPATION FACTOR</subject><subject>EMISSION</subject><subject>Enrichment</subject><subject>Extrasolar planets</subject><subject>HEATING</subject><subject>LUMINOSITY</subject><subject>MASS</subject><subject>METALLICITY</subject><subject>METALS</subject><subject>NEPTUNE PLANET</subject><subject>ORBITS</subject><subject>PHOTOCHEMISTRY</subject><subject>PHOTOMETRY</subject><subject>planets and satellites: atmospheres</subject><subject>planets and satellites: composition</subject><subject>planets and satellites: gaseous planets</subject><subject>Retrieval</subject><subject>SATELLITE ATMOSPHERES</subject><subject>SATELLITES</subject><subject>TELESCOPES</subject><subject>Thermal emission</subject><subject>Tidal effects</subject><subject>WAVELENGTHS</subject><issn>0004-6256</issn><issn>1538-3881</issn><issn>1538-3881</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqNkcuO0zAUhi0EEmXgBVhZYsNiMvUtjsMuJG4blAtKPLC0Mq4jUnWaTpwueAceepKWGTYIsfLR70-fjs4PwHuMbqhgwRL7VHhUCDxPS7IU_AVYPIcvwQIhxDxOfP4avHFuhxDGArEF-LUqq-9RlcCoSGBafJNVLWFeJjJLizUsV1BtJJR5WtdpWZwhVUVF_RTUX2Wsqtt8JtdfIKP886ezplbpOlKzI5cqyqAsqjTe5LJQ11ClyZRs5Pn_-iyNs_I2qd-CV22zd_bd7_cKqJVU8cbLynUaR5lnfCxGzw-QjwQmJNwShEPBsc94E3J8R1trtlTQkBlEqKFBINo7hoQlZtsy2zQIM0yvwIeLtndjp53pRmt-mP5wsGbUhHBOBScT9fFCHYf-4WTdqO87Z-x-3xxsf3IaC8EwQYiE_4FOixA_8PmEkgtqht65wbb6OHT3zfBTY6TnKvXcmp5bmydNtOB_Fu76o971p-EwXUc3u2dCH7ftRN38hfqH9hH1DJzI</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Morley, Caroline V.</creator><creator>Knutson, Heather</creator><creator>Line, Michael</creator><creator>Fortney, Jonathan J.</creator><creator>Thorngren, Daniel</creator><creator>Marley, Mark S.</creator><creator>Teal, Dillon</creator><creator>Lupu, Roxana</creator><general>The American Astronomical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0002-9843-4354</orcidid><orcidid>https://orcid.org/0000-0002-5251-2943</orcidid><orcidid>https://orcid.org/0000-0002-2338-476X</orcidid><orcidid>https://orcid.org/0000-0002-5113-8558</orcidid></search><sort><creationdate>20170201</creationdate><title>FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS</title><author>Morley, Caroline V. ; Knutson, Heather ; Line, Michael ; Fortney, Jonathan J. ; Thorngren, Daniel ; Marley, Mark S. ; Teal, Dillon ; Lupu, Roxana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c518t-5705081229d2019861546a961b3fecd38394c023c3778fb408e2cdf4eaa01413</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>ASTROPHYSICS, COSMOLOGY AND ASTRONOMY</topic><topic>CLOUDS</topic><topic>DISSIPATION FACTOR</topic><topic>EMISSION</topic><topic>Enrichment</topic><topic>Extrasolar planets</topic><topic>HEATING</topic><topic>LUMINOSITY</topic><topic>MASS</topic><topic>METALLICITY</topic><topic>METALS</topic><topic>NEPTUNE PLANET</topic><topic>ORBITS</topic><topic>PHOTOCHEMISTRY</topic><topic>PHOTOMETRY</topic><topic>planets and satellites: atmospheres</topic><topic>planets and satellites: composition</topic><topic>planets and satellites: gaseous planets</topic><topic>Retrieval</topic><topic>SATELLITE ATMOSPHERES</topic><topic>SATELLITES</topic><topic>TELESCOPES</topic><topic>Thermal emission</topic><topic>Tidal effects</topic><topic>WAVELENGTHS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morley, Caroline V.</creatorcontrib><creatorcontrib>Knutson, Heather</creatorcontrib><creatorcontrib>Line, Michael</creatorcontrib><creatorcontrib>Fortney, Jonathan J.</creatorcontrib><creatorcontrib>Thorngren, Daniel</creatorcontrib><creatorcontrib>Marley, Mark S.</creatorcontrib><creatorcontrib>Teal, Dillon</creatorcontrib><creatorcontrib>Lupu, Roxana</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>The Astronomical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Morley, Caroline V.</au><au>Knutson, Heather</au><au>Line, Michael</au><au>Fortney, Jonathan J.</au><au>Thorngren, Daniel</au><au>Marley, Mark S.</au><au>Teal, Dillon</au><au>Lupu, Roxana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS</atitle><jtitle>The Astronomical journal</jtitle><stitle>AJ</stitle><addtitle>Astron. J</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>153</volume><issue>2</issue><spage>86</spage><epage>86</epage><pages>86-86</pages><issn>0004-6256</issn><issn>1538-3881</issn><eissn>1538-3881</eissn><abstract>The Neptune-mass GJ 436b is one of the most studied transiting exoplanets with repeated measurements of its thermal emission and transmission spectra. We build on previous studies to answer outstanding questions about this planet, including its potentially high metallicity and tidal heating of its interior. We present new observations of GJ 436b's thermal emission at 3.6 and 4.5 m, which reduce uncertainties in estimates of GJ 436b's flux at those wavelengths and demonstrate consistency between Spitzer observations spanning more than 7 yr. We analyze the Spitzer thermal emission photometry and Hubble WFC3 transmission spectrum. We use a dual-pronged modeling approach of both self-consistent and retrieval models. We vary the metallicity, intrinsic luminosity from tidal heating, disequilibrium chemistry, and heat redistribution. We also study clouds and photochemical hazes, but do not find strong evidence for either. The self-consistent and retrieval models combine to suggest that GJ 436b has a high atmospheric metallicity, with best fits at or above several hundred times solar metallicity, tidal heating warming its interior with best-fit intrinsic effective temperatures around 300-350 K, and disequilibrium chemistry. High metal enrichments (&gt;600× solar) occur from the accretion of rocky, rather than icy, material. Assuming the interior temperature Tint ∼ 300-350 K, we find a dissipation factor Q′ ∼ 2 × 105-106, larger than Neptune's Q′, implying a long tidal circularization timescale for the orbit. We suggest that Neptune-mass planets may be more diverse than imagined, with metal enhancements spanning several orders of magnitude, to perhaps over 1000× solar metallicity. High-fidelity observations with instruments like the James Webb Space Telescope will be critical for characterizing this diversity.</abstract><cop>United States</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-3881/153/2/86</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-9843-4354</orcidid><orcidid>https://orcid.org/0000-0002-5251-2943</orcidid><orcidid>https://orcid.org/0000-0002-2338-476X</orcidid><orcidid>https://orcid.org/0000-0002-5113-8558</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0004-6256
ispartof The Astronomical journal, 2017-02, Vol.153 (2), p.86-86
issn 0004-6256
1538-3881
1538-3881
language eng
recordid cdi_proquest_miscellaneous_1884120029
source IOP Publishing Free Content
subjects ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
CLOUDS
DISSIPATION FACTOR
EMISSION
Enrichment
Extrasolar planets
HEATING
LUMINOSITY
MASS
METALLICITY
METALS
NEPTUNE PLANET
ORBITS
PHOTOCHEMISTRY
PHOTOMETRY
planets and satellites: atmospheres
planets and satellites: composition
planets and satellites: gaseous planets
Retrieval
SATELLITE ATMOSPHERES
SATELLITES
TELESCOPES
Thermal emission
Tidal effects
WAVELENGTHS
title FORWARD AND INVERSE MODELING OF THE EMISSION AND TRANSMISSION SPECTRUM OF GJ 436B: INVESTIGATING METAL ENRICHMENT, TIDAL HEATING, AND CLOUDS
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T04%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_O3W&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FORWARD%20AND%20INVERSE%20MODELING%20OF%20THE%20EMISSION%20AND%20TRANSMISSION%20SPECTRUM%20OF%20GJ%20436B:%20INVESTIGATING%20METAL%20ENRICHMENT,%20TIDAL%20HEATING,%20AND%20CLOUDS&rft.jtitle=The%20Astronomical%20journal&rft.au=Morley,%20Caroline%20V.&rft.date=2017-02-01&rft.volume=153&rft.issue=2&rft.spage=86&rft.epage=86&rft.pages=86-86&rft.issn=0004-6256&rft.eissn=1538-3881&rft_id=info:doi/10.3847/1538-3881/153/2/86&rft_dat=%3Cproquest_O3W%3E1884120029%3C/proquest_O3W%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1877825756&rft_id=info:pmid/&rfr_iscdi=true