Large edge magnetism in oxidized few-layer black phosphorus nanomeshes

The formation and control of a room-temperature magnetic order in two- dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano research 2017-02, Vol.10 (2), p.718-728
Hauptverfasser: Nakanishi, Yudai, Ishi, Ayumi, Ohata, Chika, Soriano, David, Iwaki, Ryo, Nomura, Kyoko, Hasegawa, Miki, Nakamura, Taketomo, Katsumoto, Shingo, Roche, Stephan, Haruyama, Junji
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 728
container_issue 2
container_start_page 718
container_title Nano research
container_volume 10
creator Nakanishi, Yudai
Ishi, Ayumi
Ohata, Chika
Soriano, David
Iwaki, Ryo
Nomura, Kyoko
Hasegawa, Miki
Nakamura, Taketomo
Katsumoto, Shingo
Roche, Stephan
Haruyama, Junji
description The formation and control of a room-temperature magnetic order in two- dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are -100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.
doi_str_mv 10.1007/s12274-016-1355-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884119945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671551927</cqvip_id><sourcerecordid>1884119945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-a0025303c4eca52d1ae74fd0cf1ffb4cfcd317780af2e3173c529f93b47f587a3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhhdRsFZ_gLdFL15WM_nYZI9SrAoFL3oOaXbSbt2PNumi9deb0qrgQRyYj8PzzjC8SXIO5BoIkTcBKJU8I5BnwITI1EEygKJQGYlx-DUD5cfJSQgLQnIKXA2S8cT4GaZYxtKYWYvrKjRp1abde1VWH1imDt-y2mzQp9Pa2Nd0Oe9CTN-HtDVt12CYYzhNjpypA57t-zB5Gd89jx6yydP94-h2klku6DozhFDBCLMcrRG0BIOSu5JYB85NuXW2ZCClIsZRjBOzghauYFMunVDSsGFytdu79N2qx7DWTRUs1rVpseuDBqU4xF-5-AeaK0ZoTrfo5S900fW-jY9oSghwmdOCRgp2lPVdCB6dXvqqMX6jgeitCXpngo4m6K0JWkUN3WlCZNsZ-p_Nf4ku9ofmXTtbRd33pVyCEFBQyT4BZNWUKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001476292</pqid></control><display><type>article</type><title>Large edge magnetism in oxidized few-layer black phosphorus nanomeshes</title><source>SpringerNature Journals</source><creator>Nakanishi, Yudai ; Ishi, Ayumi ; Ohata, Chika ; Soriano, David ; Iwaki, Ryo ; Nomura, Kyoko ; Hasegawa, Miki ; Nakamura, Taketomo ; Katsumoto, Shingo ; Roche, Stephan ; Haruyama, Junji</creator><creatorcontrib>Nakanishi, Yudai ; Ishi, Ayumi ; Ohata, Chika ; Soriano, David ; Iwaki, Ryo ; Nomura, Kyoko ; Hasegawa, Miki ; Nakamura, Taketomo ; Katsumoto, Shingo ; Roche, Stephan ; Haruyama, Junji</creatorcontrib><description>The formation and control of a room-temperature magnetic order in two- dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are -100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-016-1355-8</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic properties ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Devices ; Ferromagnetism ; First principles ; Graphene ; Interlayers ; Localization ; Magnetism ; Magnetization ; Materials Science ; Nanostructure ; Nanotechnology ; Oxidation ; Phosphorus ; Porosity ; Research Article ; Valence band</subject><ispartof>Nano research, 2017-02, Vol.10 (2), p.718-728</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-a0025303c4eca52d1ae74fd0cf1ffb4cfcd317780af2e3173c529f93b47f587a3</citedby><cites>FETCH-LOGICAL-c452t-a0025303c4eca52d1ae74fd0cf1ffb4cfcd317780af2e3173c529f93b47f587a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-016-1355-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-016-1355-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Nakanishi, Yudai</creatorcontrib><creatorcontrib>Ishi, Ayumi</creatorcontrib><creatorcontrib>Ohata, Chika</creatorcontrib><creatorcontrib>Soriano, David</creatorcontrib><creatorcontrib>Iwaki, Ryo</creatorcontrib><creatorcontrib>Nomura, Kyoko</creatorcontrib><creatorcontrib>Hasegawa, Miki</creatorcontrib><creatorcontrib>Nakamura, Taketomo</creatorcontrib><creatorcontrib>Katsumoto, Shingo</creatorcontrib><creatorcontrib>Roche, Stephan</creatorcontrib><creatorcontrib>Haruyama, Junji</creatorcontrib><title>Large edge magnetism in oxidized few-layer black phosphorus nanomeshes</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>The formation and control of a room-temperature magnetic order in two- dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are -100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.</description><subject>Atomic properties</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Graphene</subject><subject>Interlayers</subject><subject>Localization</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Materials Science</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Phosphorus</subject><subject>Porosity</subject><subject>Research Article</subject><subject>Valence band</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1LAzEQhhdRsFZ_gLdFL15WM_nYZI9SrAoFL3oOaXbSbt2PNumi9deb0qrgQRyYj8PzzjC8SXIO5BoIkTcBKJU8I5BnwITI1EEygKJQGYlx-DUD5cfJSQgLQnIKXA2S8cT4GaZYxtKYWYvrKjRp1abde1VWH1imDt-y2mzQp9Pa2Nd0Oe9CTN-HtDVt12CYYzhNjpypA57t-zB5Gd89jx6yydP94-h2klku6DozhFDBCLMcrRG0BIOSu5JYB85NuXW2ZCClIsZRjBOzghauYFMunVDSsGFytdu79N2qx7DWTRUs1rVpseuDBqU4xF-5-AeaK0ZoTrfo5S900fW-jY9oSghwmdOCRgp2lPVdCB6dXvqqMX6jgeitCXpngo4m6K0JWkUN3WlCZNsZ-p_Nf4ku9ofmXTtbRd33pVyCEFBQyT4BZNWUKA</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Nakanishi, Yudai</creator><creator>Ishi, Ayumi</creator><creator>Ohata, Chika</creator><creator>Soriano, David</creator><creator>Iwaki, Ryo</creator><creator>Nomura, Kyoko</creator><creator>Hasegawa, Miki</creator><creator>Nakamura, Taketomo</creator><creator>Katsumoto, Shingo</creator><creator>Roche, Stephan</creator><creator>Haruyama, Junji</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170201</creationdate><title>Large edge magnetism in oxidized few-layer black phosphorus nanomeshes</title><author>Nakanishi, Yudai ; Ishi, Ayumi ; Ohata, Chika ; Soriano, David ; Iwaki, Ryo ; Nomura, Kyoko ; Hasegawa, Miki ; Nakamura, Taketomo ; Katsumoto, Shingo ; Roche, Stephan ; Haruyama, Junji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-a0025303c4eca52d1ae74fd0cf1ffb4cfcd317780af2e3173c529f93b47f587a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic properties</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Graphene</topic><topic>Interlayers</topic><topic>Localization</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Materials Science</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Phosphorus</topic><topic>Porosity</topic><topic>Research Article</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakanishi, Yudai</creatorcontrib><creatorcontrib>Ishi, Ayumi</creatorcontrib><creatorcontrib>Ohata, Chika</creatorcontrib><creatorcontrib>Soriano, David</creatorcontrib><creatorcontrib>Iwaki, Ryo</creatorcontrib><creatorcontrib>Nomura, Kyoko</creatorcontrib><creatorcontrib>Hasegawa, Miki</creatorcontrib><creatorcontrib>Nakamura, Taketomo</creatorcontrib><creatorcontrib>Katsumoto, Shingo</creatorcontrib><creatorcontrib>Roche, Stephan</creatorcontrib><creatorcontrib>Haruyama, Junji</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakanishi, Yudai</au><au>Ishi, Ayumi</au><au>Ohata, Chika</au><au>Soriano, David</au><au>Iwaki, Ryo</au><au>Nomura, Kyoko</au><au>Hasegawa, Miki</au><au>Nakamura, Taketomo</au><au>Katsumoto, Shingo</au><au>Roche, Stephan</au><au>Haruyama, Junji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large edge magnetism in oxidized few-layer black phosphorus nanomeshes</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>10</volume><issue>2</issue><spage>718</spage><epage>728</epage><pages>718-728</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>The formation and control of a room-temperature magnetic order in two- dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are -100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-016-1355-8</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2017-02, Vol.10 (2), p.718-728
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_miscellaneous_1884119945
source SpringerNature Journals
subjects Atomic properties
Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Chemistry and Materials Science
Condensed Matter Physics
Devices
Ferromagnetism
First principles
Graphene
Interlayers
Localization
Magnetism
Magnetization
Materials Science
Nanostructure
Nanotechnology
Oxidation
Phosphorus
Porosity
Research Article
Valence band
title Large edge magnetism in oxidized few-layer black phosphorus nanomeshes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T09%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20edge%20magnetism%20in%20oxidized%20few-layer%20black%20phosphorus%20nanomeshes&rft.jtitle=Nano%20research&rft.au=Nakanishi,%20Yudai&rft.date=2017-02-01&rft.volume=10&rft.issue=2&rft.spage=718&rft.epage=728&rft.pages=718-728&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-016-1355-8&rft_dat=%3Cproquest_cross%3E1884119945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001476292&rft_id=info:pmid/&rft_cqvip_id=671551927&rfr_iscdi=true