Large edge magnetism in oxidized few-layer black phosphorus nanomeshes
The formation and control of a room-temperature magnetic order in two- dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graph...
Gespeichert in:
Veröffentlicht in: | Nano research 2017-02, Vol.10 (2), p.718-728 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 728 |
---|---|
container_issue | 2 |
container_start_page | 718 |
container_title | Nano research |
container_volume | 10 |
creator | Nakanishi, Yudai Ishi, Ayumi Ohata, Chika Soriano, David Iwaki, Ryo Nomura, Kyoko Hasegawa, Miki Nakamura, Taketomo Katsumoto, Shingo Roche, Stephan Haruyama, Junji |
description | The formation and control of a room-temperature magnetic order in two- dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are -100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements. |
doi_str_mv | 10.1007/s12274-016-1355-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884119945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>671551927</cqvip_id><sourcerecordid>1884119945</sourcerecordid><originalsourceid>FETCH-LOGICAL-c452t-a0025303c4eca52d1ae74fd0cf1ffb4cfcd317780af2e3173c529f93b47f587a3</originalsourceid><addsrcrecordid>eNqNkU1LAzEQhhdRsFZ_gLdFL15WM_nYZI9SrAoFL3oOaXbSbt2PNumi9deb0qrgQRyYj8PzzjC8SXIO5BoIkTcBKJU8I5BnwITI1EEygKJQGYlx-DUD5cfJSQgLQnIKXA2S8cT4GaZYxtKYWYvrKjRp1abde1VWH1imDt-y2mzQp9Pa2Nd0Oe9CTN-HtDVt12CYYzhNjpypA57t-zB5Gd89jx6yydP94-h2klku6DozhFDBCLMcrRG0BIOSu5JYB85NuXW2ZCClIsZRjBOzghauYFMunVDSsGFytdu79N2qx7DWTRUs1rVpseuDBqU4xF-5-AeaK0ZoTrfo5S900fW-jY9oSghwmdOCRgp2lPVdCB6dXvqqMX6jgeitCXpngo4m6K0JWkUN3WlCZNsZ-p_Nf4ku9ofmXTtbRd33pVyCEFBQyT4BZNWUKA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2001476292</pqid></control><display><type>article</type><title>Large edge magnetism in oxidized few-layer black phosphorus nanomeshes</title><source>SpringerNature Journals</source><creator>Nakanishi, Yudai ; Ishi, Ayumi ; Ohata, Chika ; Soriano, David ; Iwaki, Ryo ; Nomura, Kyoko ; Hasegawa, Miki ; Nakamura, Taketomo ; Katsumoto, Shingo ; Roche, Stephan ; Haruyama, Junji</creator><creatorcontrib>Nakanishi, Yudai ; Ishi, Ayumi ; Ohata, Chika ; Soriano, David ; Iwaki, Ryo ; Nomura, Kyoko ; Hasegawa, Miki ; Nakamura, Taketomo ; Katsumoto, Shingo ; Roche, Stephan ; Haruyama, Junji</creatorcontrib><description>The formation and control of a room-temperature magnetic order in two- dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are -100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-016-1355-8</identifier><language>eng</language><publisher>Beijing: Tsinghua University Press</publisher><subject>Atomic properties ; Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Chemistry and Materials Science ; Condensed Matter Physics ; Devices ; Ferromagnetism ; First principles ; Graphene ; Interlayers ; Localization ; Magnetism ; Magnetization ; Materials Science ; Nanostructure ; Nanotechnology ; Oxidation ; Phosphorus ; Porosity ; Research Article ; Valence band</subject><ispartof>Nano research, 2017-02, Vol.10 (2), p.718-728</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2017</rights><rights>Nano Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c452t-a0025303c4eca52d1ae74fd0cf1ffb4cfcd317780af2e3173c529f93b47f587a3</citedby><cites>FETCH-LOGICAL-c452t-a0025303c4eca52d1ae74fd0cf1ffb4cfcd317780af2e3173c529f93b47f587a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s12274-016-1355-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s12274-016-1355-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,782,786,27931,27932,41495,42564,51326</link.rule.ids></links><search><creatorcontrib>Nakanishi, Yudai</creatorcontrib><creatorcontrib>Ishi, Ayumi</creatorcontrib><creatorcontrib>Ohata, Chika</creatorcontrib><creatorcontrib>Soriano, David</creatorcontrib><creatorcontrib>Iwaki, Ryo</creatorcontrib><creatorcontrib>Nomura, Kyoko</creatorcontrib><creatorcontrib>Hasegawa, Miki</creatorcontrib><creatorcontrib>Nakamura, Taketomo</creatorcontrib><creatorcontrib>Katsumoto, Shingo</creatorcontrib><creatorcontrib>Roche, Stephan</creatorcontrib><creatorcontrib>Haruyama, Junji</creatorcontrib><title>Large edge magnetism in oxidized few-layer black phosphorus nanomeshes</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>The formation and control of a room-temperature magnetic order in two- dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are -100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.</description><subject>Atomic properties</subject><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Devices</subject><subject>Ferromagnetism</subject><subject>First principles</subject><subject>Graphene</subject><subject>Interlayers</subject><subject>Localization</subject><subject>Magnetism</subject><subject>Magnetization</subject><subject>Materials Science</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Oxidation</subject><subject>Phosphorus</subject><subject>Porosity</subject><subject>Research Article</subject><subject>Valence band</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkU1LAzEQhhdRsFZ_gLdFL15WM_nYZI9SrAoFL3oOaXbSbt2PNumi9deb0qrgQRyYj8PzzjC8SXIO5BoIkTcBKJU8I5BnwITI1EEygKJQGYlx-DUD5cfJSQgLQnIKXA2S8cT4GaZYxtKYWYvrKjRp1abde1VWH1imDt-y2mzQp9Pa2Nd0Oe9CTN-HtDVt12CYYzhNjpypA57t-zB5Gd89jx6yydP94-h2klku6DozhFDBCLMcrRG0BIOSu5JYB85NuXW2ZCClIsZRjBOzghauYFMunVDSsGFytdu79N2qx7DWTRUs1rVpseuDBqU4xF-5-AeaK0ZoTrfo5S900fW-jY9oSghwmdOCRgp2lPVdCB6dXvqqMX6jgeitCXpngo4m6K0JWkUN3WlCZNsZ-p_Nf4ku9ofmXTtbRd33pVyCEFBQyT4BZNWUKA</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Nakanishi, Yudai</creator><creator>Ishi, Ayumi</creator><creator>Ohata, Chika</creator><creator>Soriano, David</creator><creator>Iwaki, Ryo</creator><creator>Nomura, Kyoko</creator><creator>Hasegawa, Miki</creator><creator>Nakamura, Taketomo</creator><creator>Katsumoto, Shingo</creator><creator>Roche, Stephan</creator><creator>Haruyama, Junji</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20170201</creationdate><title>Large edge magnetism in oxidized few-layer black phosphorus nanomeshes</title><author>Nakanishi, Yudai ; Ishi, Ayumi ; Ohata, Chika ; Soriano, David ; Iwaki, Ryo ; Nomura, Kyoko ; Hasegawa, Miki ; Nakamura, Taketomo ; Katsumoto, Shingo ; Roche, Stephan ; Haruyama, Junji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c452t-a0025303c4eca52d1ae74fd0cf1ffb4cfcd317780af2e3173c529f93b47f587a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atomic properties</topic><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Devices</topic><topic>Ferromagnetism</topic><topic>First principles</topic><topic>Graphene</topic><topic>Interlayers</topic><topic>Localization</topic><topic>Magnetism</topic><topic>Magnetization</topic><topic>Materials Science</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Oxidation</topic><topic>Phosphorus</topic><topic>Porosity</topic><topic>Research Article</topic><topic>Valence band</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nakanishi, Yudai</creatorcontrib><creatorcontrib>Ishi, Ayumi</creatorcontrib><creatorcontrib>Ohata, Chika</creatorcontrib><creatorcontrib>Soriano, David</creatorcontrib><creatorcontrib>Iwaki, Ryo</creatorcontrib><creatorcontrib>Nomura, Kyoko</creatorcontrib><creatorcontrib>Hasegawa, Miki</creatorcontrib><creatorcontrib>Nakamura, Taketomo</creatorcontrib><creatorcontrib>Katsumoto, Shingo</creatorcontrib><creatorcontrib>Roche, Stephan</creatorcontrib><creatorcontrib>Haruyama, Junji</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakanishi, Yudai</au><au>Ishi, Ayumi</au><au>Ohata, Chika</au><au>Soriano, David</au><au>Iwaki, Ryo</au><au>Nomura, Kyoko</au><au>Hasegawa, Miki</au><au>Nakamura, Taketomo</au><au>Katsumoto, Shingo</au><au>Roche, Stephan</au><au>Haruyama, Junji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Large edge magnetism in oxidized few-layer black phosphorus nanomeshes</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2017-02-01</date><risdate>2017</risdate><volume>10</volume><issue>2</issue><spage>718</spage><epage>728</epage><pages>718-728</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>The formation and control of a room-temperature magnetic order in two- dimensional (2D) materials is a challenging quest for the advent of innovative magnetic- and spintronic-based technologies. To date, edge magnetism in 2D materials has been experimentally observed in hydrogen (H)-terminated graphene nanoribbons (GNRs) and graphene nanomeshes (GNMs), but the measured magnetization remains far too small to allow envisioning practical applications. Herein, we report experimental evidences of large room-temperature edge ferromagnetism (FM) obtained from oxygen (O)-terminated zigzag pore edges of few-layer black phosphorus (P) nanomeshes (BPNMs). The magnetization values per unit area are -100 times larger than those reported for H-terminated GNMs, while the magnetism is absent for H-terminated BPNMs. The magnetization measurements and the first-principles simulations suggest that the origin of such a magnetic order could stem from ferromagnetic spin coupling between edge P with O atoms, resulting in a strong spin localization at the edge valence band, and from uniform oxidation of full pore edges over a large area and interlayer spin interaction. Our findings pave the way for realizing high-efficiency 2D flexible magnetic and spintronic devices without the use of rare magnetic elements.</abstract><cop>Beijing</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-016-1355-8</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2017-02, Vol.10 (2), p.718-728 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884119945 |
source | SpringerNature Journals |
subjects | Atomic properties Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Chemistry and Materials Science Condensed Matter Physics Devices Ferromagnetism First principles Graphene Interlayers Localization Magnetism Magnetization Materials Science Nanostructure Nanotechnology Oxidation Phosphorus Porosity Research Article Valence band |
title | Large edge magnetism in oxidized few-layer black phosphorus nanomeshes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-06T09%3A16%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Large%20edge%20magnetism%20in%20oxidized%20few-layer%20black%20phosphorus%20nanomeshes&rft.jtitle=Nano%20research&rft.au=Nakanishi,%20Yudai&rft.date=2017-02-01&rft.volume=10&rft.issue=2&rft.spage=718&rft.epage=728&rft.pages=718-728&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-016-1355-8&rft_dat=%3Cproquest_cross%3E1884119945%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2001476292&rft_id=info:pmid/&rft_cqvip_id=671551927&rfr_iscdi=true |