Nonlinear radial oscillations of coronal loops

The behavior of radial oscillations of coronal magnetic tubes is considered in a weakly nonlinear approximation. The nonlinear Schrödinger equation, the coefficients of which are found from the tube and radial mode parameters, has been obtained for the oscillation amplitude. The coefficients have be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geomagnetism and Aeronomy 2016-12, Vol.56 (8), p.1040-1044
Hauptverfasser: Mikhalyaev, B. B., Ruderman, M. S., Naga Varun, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1044
container_issue 8
container_start_page 1040
container_title Geomagnetism and Aeronomy
container_volume 56
creator Mikhalyaev, B. B.
Ruderman, M. S.
Naga Varun, E.
description The behavior of radial oscillations of coronal magnetic tubes is considered in a weakly nonlinear approximation. The nonlinear Schrödinger equation, the coefficients of which are found from the tube and radial mode parameters, has been obtained for the oscillation amplitude. The coefficients have been calculated for the fundamental radial mode, which is characterized by the absence of the cutoff in the region of low frequencies. It has been shown that the modulation instability condition is satisfied in a wide range of mode parameter values, which indicates that large-amplitude radial oscillations can exist in coronal loops.
doi_str_mv 10.1134/S0016793216080168
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884117810</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884117810</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-a7f915c7aa49d47c0724736a6d2805bb0d8246018d9cb2bb19676191bad5472c3</originalsourceid><addsrcrecordid>eNqNkE9LAzEQxYMoWKsfwNuCFy9bZ_I_RylahaIHFbwt2WxWtmw3Ndke_Pam1IMogqcZ5v3eMPMIOUeYITJ-9QSAUhlGUYLOrT4gExRClJKL10My2cnlTj8mJymtABgIgRMyewhD3w3exiLaprN9EZLr-t6OXRhSEdrChRiGPO9D2KRTctTaPvmzrzolL7c3z_O7cvm4uJ9fL0vHNB1Lq1qDwilruWm4cqAoV0xa2VANoq6h0ZRLQN0YV9O6RiOVRIO1bQRX1LEpudzv3cTwvvVprNZdcj7fNfiwTRVqzRGVRvgHqjJHJdKMXvxAV2Eb83OZMoyxHFwuU4J7ysWQUvRttYnd2saPCqHahV39Cjt76N6TMju8-fht85-mT9ucfag</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933380193</pqid></control><display><type>article</type><title>Nonlinear radial oscillations of coronal loops</title><source>SpringerLink Journals - AutoHoldings</source><creator>Mikhalyaev, B. B. ; Ruderman, M. S. ; Naga Varun, E.</creator><creatorcontrib>Mikhalyaev, B. B. ; Ruderman, M. S. ; Naga Varun, E.</creatorcontrib><description>The behavior of radial oscillations of coronal magnetic tubes is considered in a weakly nonlinear approximation. The nonlinear Schrödinger equation, the coefficients of which are found from the tube and radial mode parameters, has been obtained for the oscillation amplitude. The coefficients have been calculated for the fundamental radial mode, which is characterized by the absence of the cutoff in the region of low frequencies. It has been shown that the modulation instability condition is satisfied in a wide range of mode parameter values, which indicates that large-amplitude radial oscillations can exist in coronal loops.</description><identifier>ISSN: 0016-7932</identifier><identifier>EISSN: 1555-645X</identifier><identifier>EISSN: 0016-7940</identifier><identifier>DOI: 10.1134/S0016793216080168</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Corona ; Coronal loops ; Earth and Environmental Science ; Earth Sciences ; Geophysics/Geodesy ; Instability ; Mathematical analysis ; Modulation ; Nonlinear equations ; Nonlinearity ; Oscillations ; Oscillators ; Parameters ; Schrodinger equation ; Schroedinger equation ; Stability ; Tubes</subject><ispartof>Geomagnetism and Aeronomy, 2016-12, Vol.56 (8), p.1040-1044</ispartof><rights>Pleiades Publishing, Ltd. 2016</rights><rights>Geomagnetism and Aeronomy is a copyright of Springer, 2016.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-a7f915c7aa49d47c0724736a6d2805bb0d8246018d9cb2bb19676191bad5472c3</citedby><cites>FETCH-LOGICAL-c382t-a7f915c7aa49d47c0724736a6d2805bb0d8246018d9cb2bb19676191bad5472c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0016793216080168$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0016793216080168$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Mikhalyaev, B. B.</creatorcontrib><creatorcontrib>Ruderman, M. S.</creatorcontrib><creatorcontrib>Naga Varun, E.</creatorcontrib><title>Nonlinear radial oscillations of coronal loops</title><title>Geomagnetism and Aeronomy</title><addtitle>Geomagn. Aeron</addtitle><description>The behavior of radial oscillations of coronal magnetic tubes is considered in a weakly nonlinear approximation. The nonlinear Schrödinger equation, the coefficients of which are found from the tube and radial mode parameters, has been obtained for the oscillation amplitude. The coefficients have been calculated for the fundamental radial mode, which is characterized by the absence of the cutoff in the region of low frequencies. It has been shown that the modulation instability condition is satisfied in a wide range of mode parameter values, which indicates that large-amplitude radial oscillations can exist in coronal loops.</description><subject>Corona</subject><subject>Coronal loops</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Geophysics/Geodesy</subject><subject>Instability</subject><subject>Mathematical analysis</subject><subject>Modulation</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Oscillations</subject><subject>Oscillators</subject><subject>Parameters</subject><subject>Schrodinger equation</subject><subject>Schroedinger equation</subject><subject>Stability</subject><subject>Tubes</subject><issn>0016-7932</issn><issn>1555-645X</issn><issn>0016-7940</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkE9LAzEQxYMoWKsfwNuCFy9bZ_I_RylahaIHFbwt2WxWtmw3Ndke_Pam1IMogqcZ5v3eMPMIOUeYITJ-9QSAUhlGUYLOrT4gExRClJKL10My2cnlTj8mJymtABgIgRMyewhD3w3exiLaprN9EZLr-t6OXRhSEdrChRiGPO9D2KRTctTaPvmzrzolL7c3z_O7cvm4uJ9fL0vHNB1Lq1qDwilruWm4cqAoV0xa2VANoq6h0ZRLQN0YV9O6RiOVRIO1bQRX1LEpudzv3cTwvvVprNZdcj7fNfiwTRVqzRGVRvgHqjJHJdKMXvxAV2Eb83OZMoyxHFwuU4J7ysWQUvRttYnd2saPCqHahV39Cjt76N6TMju8-fht85-mT9ucfag</recordid><startdate>20161201</startdate><enddate>20161201</enddate><creator>Mikhalyaev, B. B.</creator><creator>Ruderman, M. S.</creator><creator>Naga Varun, E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope></search><sort><creationdate>20161201</creationdate><title>Nonlinear radial oscillations of coronal loops</title><author>Mikhalyaev, B. B. ; Ruderman, M. S. ; Naga Varun, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-a7f915c7aa49d47c0724736a6d2805bb0d8246018d9cb2bb19676191bad5472c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Corona</topic><topic>Coronal loops</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Geophysics/Geodesy</topic><topic>Instability</topic><topic>Mathematical analysis</topic><topic>Modulation</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Oscillations</topic><topic>Oscillators</topic><topic>Parameters</topic><topic>Schrodinger equation</topic><topic>Schroedinger equation</topic><topic>Stability</topic><topic>Tubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mikhalyaev, B. B.</creatorcontrib><creatorcontrib>Ruderman, M. S.</creatorcontrib><creatorcontrib>Naga Varun, E.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Geomagnetism and Aeronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mikhalyaev, B. B.</au><au>Ruderman, M. S.</au><au>Naga Varun, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonlinear radial oscillations of coronal loops</atitle><jtitle>Geomagnetism and Aeronomy</jtitle><stitle>Geomagn. Aeron</stitle><date>2016-12-01</date><risdate>2016</risdate><volume>56</volume><issue>8</issue><spage>1040</spage><epage>1044</epage><pages>1040-1044</pages><issn>0016-7932</issn><eissn>1555-645X</eissn><eissn>0016-7940</eissn><abstract>The behavior of radial oscillations of coronal magnetic tubes is considered in a weakly nonlinear approximation. The nonlinear Schrödinger equation, the coefficients of which are found from the tube and radial mode parameters, has been obtained for the oscillation amplitude. The coefficients have been calculated for the fundamental radial mode, which is characterized by the absence of the cutoff in the region of low frequencies. It has been shown that the modulation instability condition is satisfied in a wide range of mode parameter values, which indicates that large-amplitude radial oscillations can exist in coronal loops.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0016793216080168</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7932
ispartof Geomagnetism and Aeronomy, 2016-12, Vol.56 (8), p.1040-1044
issn 0016-7932
1555-645X
0016-7940
language eng
recordid cdi_proquest_miscellaneous_1884117810
source SpringerLink Journals - AutoHoldings
subjects Corona
Coronal loops
Earth and Environmental Science
Earth Sciences
Geophysics/Geodesy
Instability
Mathematical analysis
Modulation
Nonlinear equations
Nonlinearity
Oscillations
Oscillators
Parameters
Schrodinger equation
Schroedinger equation
Stability
Tubes
title Nonlinear radial oscillations of coronal loops
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T07%3A51%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonlinear%20radial%20oscillations%20of%20coronal%20loops&rft.jtitle=Geomagnetism%20and%20Aeronomy&rft.au=Mikhalyaev,%20B.%20B.&rft.date=2016-12-01&rft.volume=56&rft.issue=8&rft.spage=1040&rft.epage=1044&rft.pages=1040-1044&rft.issn=0016-7932&rft.eissn=1555-645X&rft_id=info:doi/10.1134/S0016793216080168&rft_dat=%3Cproquest_cross%3E1884117810%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1933380193&rft_id=info:pmid/&rfr_iscdi=true