Is Diffuse Aurora Driven from Above or Below?

Abstract In the diffuse aurora, magnetospheric electrons, initially precipitated from the inner plasma sheet via wave-particle interaction processes, degrade in the atmosphere toward lower energies, and produce secondary electrons via impact ionization of the neutral atmosphere. These initially prec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2017-01, Vol.44 (2), p.641-647
Hauptverfasser: Khazanov, G. V., Sibeck, D. G., Zesta, E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 647
container_issue 2
container_start_page 641
container_title Geophysical research letters
container_volume 44
creator Khazanov, G. V.
Sibeck, D. G.
Zesta, E.
description Abstract In the diffuse aurora, magnetospheric electrons, initially precipitated from the inner plasma sheet via wave-particle interaction processes, degrade in the atmosphere toward lower energies, and produce secondary electrons via impact ionization of the neutral atmosphere. These initially precipitating electrons of magnetospheric origin can also be additionally reflected back into the magnetosphere, leading to a series of multiple reactions by the two magnetically conjugate atmospheres that can greatly impact the initially precipitating flux at the upper ionospheric boundary (700-800 km). The resultant population of secondary and primary electrons cascades toward lower energies and escape back to the magnetosphere. Escaping upward electrons traveling from the ionosphere can be trapped in the magnetosphere, as they travel inside the loss cone, via Coulomb collisions with the cold plasma, or by interactions with various plasma waves. Even though this scenario is intuitively transparent, this magnetosphere-ionosphere coupling element is not considered in any of the existing diffuse aurora research. Nevertheless, as we demonstrate in this letter, this process has the potential to dramatically affect the formation of electron precipitated fluxes in the regions of diffuse auroras.
doi_str_mv 10.1002/2016GL072063
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884117711</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884117711</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5254-65038caa2326c00c60c7d19e263681471a3da2104c554b848d7bc5596d3228193</originalsourceid><addsrcrecordid>eNqN0c1LwzAUAPAgCs7pzaOHghcPVt9L0iQ9ydx0DgaC6DlkbQodXTMTu7H_3ox6EA_D03uH33u8D0IuEe4QgN5TQDGdg6Qg2BEZYM55qgDkMRkA5DGnUpySsxCWAMCA4YCks5BM6qrqgk1GnXfeJBNfb2ybVN6tktHCbWzifPJoG7d9OCcnlWmCvfiJQ_Lx_PQ-fknnr9PZeDRPi4xmPBUZMFUYQxkVBUAhoJAl5pYKJhRyiYaVhiLwIsv4QnFVykVMc1EyShXmbEhu-r5r7z47G770qg6FbRrTWtcFjUpxRCkR_0GlVCyTOY_0-g9dus63cRGNOaLIROx6UCkJwLnMZVS3vSq8C8HbSq99vTJ-pxH0_hn69zMipz3f1o3dHbR6-jaPZ2H7ea_6otYEo9svH_YwjgD7ldg3dquMRg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1870044797</pqid></control><display><type>article</type><title>Is Diffuse Aurora Driven from Above or Below?</title><source>Wiley Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>NASA Technical Reports Server</source><creator>Khazanov, G. V. ; Sibeck, D. G. ; Zesta, E.</creator><creatorcontrib>Khazanov, G. V. ; Sibeck, D. G. ; Zesta, E.</creatorcontrib><description>Abstract In the diffuse aurora, magnetospheric electrons, initially precipitated from the inner plasma sheet via wave-particle interaction processes, degrade in the atmosphere toward lower energies, and produce secondary electrons via impact ionization of the neutral atmosphere. These initially precipitating electrons of magnetospheric origin can also be additionally reflected back into the magnetosphere, leading to a series of multiple reactions by the two magnetically conjugate atmospheres that can greatly impact the initially precipitating flux at the upper ionospheric boundary (700-800 km). The resultant population of secondary and primary electrons cascades toward lower energies and escape back to the magnetosphere. Escaping upward electrons traveling from the ionosphere can be trapped in the magnetosphere, as they travel inside the loss cone, via Coulomb collisions with the cold plasma, or by interactions with various plasma waves. Even though this scenario is intuitively transparent, this magnetosphere-ionosphere coupling element is not considered in any of the existing diffuse aurora research. Nevertheless, as we demonstrate in this letter, this process has the potential to dramatically affect the formation of electron precipitated fluxes in the regions of diffuse auroras.</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1002/2016GL072063</identifier><language>eng</language><publisher>Goddard Space Flight Center: AGU Publications</publisher><subject>Atmosphere ; Atmospheres ; Auroras ; Cascades ; Collisions ; Conjugates ; Coulomb collisions ; Coulomb friction ; Coupling ; Coupling (molecular) ; Degradation ; Diffuse aurora ; electron precipitation ; Fluxes ; Formations ; Geophysics ; Interactions ; Ionization ; Ionosphere ; Magnetic fields ; Magnetosphere ; Magnetosphere-ionosphere coupling ; Magnetospheres ; Magnetospheric electrons ; Physics (General) ; Plasma waves ; Travel ; X-rays</subject><ispartof>Geophysical research letters, 2017-01, Vol.44 (2), p.641-647</ispartof><rights>Published 2017. American Geophysical Union. This article is a US Government work and is in the public domain in the USA.</rights><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5254-65038caa2326c00c60c7d19e263681471a3da2104c554b848d7bc5596d3228193</citedby><cites>FETCH-LOGICAL-c5254-65038caa2326c00c60c7d19e263681471a3da2104c554b848d7bc5596d3228193</cites><orcidid>0000-0002-1899-5275 ; 0000-0003-3240-7510 ; 0000-0002-6869-9618</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2F2016GL072063$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2F2016GL072063$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,1433,11514,27924,27925,45574,45575,46409,46468,46833,46892</link.rule.ids></links><search><creatorcontrib>Khazanov, G. V.</creatorcontrib><creatorcontrib>Sibeck, D. G.</creatorcontrib><creatorcontrib>Zesta, E.</creatorcontrib><title>Is Diffuse Aurora Driven from Above or Below?</title><title>Geophysical research letters</title><description>Abstract In the diffuse aurora, magnetospheric electrons, initially precipitated from the inner plasma sheet via wave-particle interaction processes, degrade in the atmosphere toward lower energies, and produce secondary electrons via impact ionization of the neutral atmosphere. These initially precipitating electrons of magnetospheric origin can also be additionally reflected back into the magnetosphere, leading to a series of multiple reactions by the two magnetically conjugate atmospheres that can greatly impact the initially precipitating flux at the upper ionospheric boundary (700-800 km). The resultant population of secondary and primary electrons cascades toward lower energies and escape back to the magnetosphere. Escaping upward electrons traveling from the ionosphere can be trapped in the magnetosphere, as they travel inside the loss cone, via Coulomb collisions with the cold plasma, or by interactions with various plasma waves. Even though this scenario is intuitively transparent, this magnetosphere-ionosphere coupling element is not considered in any of the existing diffuse aurora research. Nevertheless, as we demonstrate in this letter, this process has the potential to dramatically affect the formation of electron precipitated fluxes in the regions of diffuse auroras.</description><subject>Atmosphere</subject><subject>Atmospheres</subject><subject>Auroras</subject><subject>Cascades</subject><subject>Collisions</subject><subject>Conjugates</subject><subject>Coulomb collisions</subject><subject>Coulomb friction</subject><subject>Coupling</subject><subject>Coupling (molecular)</subject><subject>Degradation</subject><subject>Diffuse aurora</subject><subject>electron precipitation</subject><subject>Fluxes</subject><subject>Formations</subject><subject>Geophysics</subject><subject>Interactions</subject><subject>Ionization</subject><subject>Ionosphere</subject><subject>Magnetic fields</subject><subject>Magnetosphere</subject><subject>Magnetosphere-ionosphere coupling</subject><subject>Magnetospheres</subject><subject>Magnetospheric electrons</subject><subject>Physics (General)</subject><subject>Plasma waves</subject><subject>Travel</subject><subject>X-rays</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>CYI</sourceid><recordid>eNqN0c1LwzAUAPAgCs7pzaOHghcPVt9L0iQ9ydx0DgaC6DlkbQodXTMTu7H_3ox6EA_D03uH33u8D0IuEe4QgN5TQDGdg6Qg2BEZYM55qgDkMRkA5DGnUpySsxCWAMCA4YCks5BM6qrqgk1GnXfeJBNfb2ybVN6tktHCbWzifPJoG7d9OCcnlWmCvfiJQ_Lx_PQ-fknnr9PZeDRPi4xmPBUZMFUYQxkVBUAhoJAl5pYKJhRyiYaVhiLwIsv4QnFVykVMc1EyShXmbEhu-r5r7z47G770qg6FbRrTWtcFjUpxRCkR_0GlVCyTOY_0-g9dus63cRGNOaLIROx6UCkJwLnMZVS3vSq8C8HbSq99vTJ-pxH0_hn69zMipz3f1o3dHbR6-jaPZ2H7ea_6otYEo9svH_YwjgD7ldg3dquMRg</recordid><startdate>20170128</startdate><enddate>20170128</enddate><creator>Khazanov, G. V.</creator><creator>Sibeck, D. G.</creator><creator>Zesta, E.</creator><general>AGU Publications</general><general>John Wiley &amp; Sons, Inc</general><scope>CYE</scope><scope>CYI</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1899-5275</orcidid><orcidid>https://orcid.org/0000-0003-3240-7510</orcidid><orcidid>https://orcid.org/0000-0002-6869-9618</orcidid></search><sort><creationdate>20170128</creationdate><title>Is Diffuse Aurora Driven from Above or Below?</title><author>Khazanov, G. V. ; Sibeck, D. G. ; Zesta, E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5254-65038caa2326c00c60c7d19e263681471a3da2104c554b848d7bc5596d3228193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Atmosphere</topic><topic>Atmospheres</topic><topic>Auroras</topic><topic>Cascades</topic><topic>Collisions</topic><topic>Conjugates</topic><topic>Coulomb collisions</topic><topic>Coulomb friction</topic><topic>Coupling</topic><topic>Coupling (molecular)</topic><topic>Degradation</topic><topic>Diffuse aurora</topic><topic>electron precipitation</topic><topic>Fluxes</topic><topic>Formations</topic><topic>Geophysics</topic><topic>Interactions</topic><topic>Ionization</topic><topic>Ionosphere</topic><topic>Magnetic fields</topic><topic>Magnetosphere</topic><topic>Magnetosphere-ionosphere coupling</topic><topic>Magnetospheres</topic><topic>Magnetospheric electrons</topic><topic>Physics (General)</topic><topic>Plasma waves</topic><topic>Travel</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Khazanov, G. V.</creatorcontrib><creatorcontrib>Sibeck, D. G.</creatorcontrib><creatorcontrib>Zesta, E.</creatorcontrib><collection>NASA Scientific and Technical Information</collection><collection>NASA Technical Reports Server</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Khazanov, G. V.</au><au>Sibeck, D. G.</au><au>Zesta, E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Is Diffuse Aurora Driven from Above or Below?</atitle><jtitle>Geophysical research letters</jtitle><date>2017-01-28</date><risdate>2017</risdate><volume>44</volume><issue>2</issue><spage>641</spage><epage>647</epage><pages>641-647</pages><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Abstract In the diffuse aurora, magnetospheric electrons, initially precipitated from the inner plasma sheet via wave-particle interaction processes, degrade in the atmosphere toward lower energies, and produce secondary electrons via impact ionization of the neutral atmosphere. These initially precipitating electrons of magnetospheric origin can also be additionally reflected back into the magnetosphere, leading to a series of multiple reactions by the two magnetically conjugate atmospheres that can greatly impact the initially precipitating flux at the upper ionospheric boundary (700-800 km). The resultant population of secondary and primary electrons cascades toward lower energies and escape back to the magnetosphere. Escaping upward electrons traveling from the ionosphere can be trapped in the magnetosphere, as they travel inside the loss cone, via Coulomb collisions with the cold plasma, or by interactions with various plasma waves. Even though this scenario is intuitively transparent, this magnetosphere-ionosphere coupling element is not considered in any of the existing diffuse aurora research. Nevertheless, as we demonstrate in this letter, this process has the potential to dramatically affect the formation of electron precipitated fluxes in the regions of diffuse auroras.</abstract><cop>Goddard Space Flight Center</cop><pub>AGU Publications</pub><doi>10.1002/2016GL072063</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-1899-5275</orcidid><orcidid>https://orcid.org/0000-0003-3240-7510</orcidid><orcidid>https://orcid.org/0000-0002-6869-9618</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2017-01, Vol.44 (2), p.641-647
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_miscellaneous_1884117711
source Wiley Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Free Content; Wiley-Blackwell AGU Digital Library; NASA Technical Reports Server
subjects Atmosphere
Atmospheres
Auroras
Cascades
Collisions
Conjugates
Coulomb collisions
Coulomb friction
Coupling
Coupling (molecular)
Degradation
Diffuse aurora
electron precipitation
Fluxes
Formations
Geophysics
Interactions
Ionization
Ionosphere
Magnetic fields
Magnetosphere
Magnetosphere-ionosphere coupling
Magnetospheres
Magnetospheric electrons
Physics (General)
Plasma waves
Travel
X-rays
title Is Diffuse Aurora Driven from Above or Below?
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Is%20Diffuse%20Aurora%20Driven%20from%20Above%20or%20Below?&rft.jtitle=Geophysical%20research%20letters&rft.au=Khazanov,%20G.%20V.&rft.date=2017-01-28&rft.volume=44&rft.issue=2&rft.spage=641&rft.epage=647&rft.pages=641-647&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1002/2016GL072063&rft_dat=%3Cproquest_cross%3E1884117711%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1870044797&rft_id=info:pmid/&rfr_iscdi=true