Matrix product purifications for canonical ensembles and quantum number distributions
Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2016-09, Vol.94 (11), Article 115157 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 11 |
container_start_page | |
container_title | Physical review. B |
container_volume | 94 |
creator | Barthel, Thomas |
description | Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand-canonical ensemble, also when symmetries are exploited. This paper provides and demonstrates methods for the efficient computation of MPPs of canonical ensembles under utilization of symmetries. Furthermore, we present a scheme for the evaluation of global quantum number distributions using matrix product density operators (MPDOs). We provide exact matrix product representations for canonical infinite-temperature states, and discuss how they can be constructed alternatively by applying matrix product operators to vacuum-type states or by using entangler Hamiltonians. A demonstration of the techniques for Heisenberg spin-1/2 chains explains why the difference in the energy densities of canonical and grand-canonical ensembles decays as 1/L. |
doi_str_mv | 10.1103/PhysRevB.94.115157 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884116729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884116729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-2bd4509362a9aeeb1f8f3dfe99e82f54f7e58e87a71913c52998707c59521743</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpC3DykUuKndhx9ggVf1IRCJWz5ThrEZQ4rR0j-vYECpxmNZodjT5Czjlbcs6Ky-e3fXzBj-sliMmQXKojMstFCRlACcf_t2SnZBHjO2OMlwwUgxl5fTRjaD_pNgxNsiPdptC61pqxHXykbgjUGj_4yeko-oh93WGkxjd0l4wfU0996msMtGnjVFSnn8czcuJMF3Hxq3Oyub3ZrO6z9dPdw-pqndlClGOW142QDIoyN2AQa-4qVzQOAbDKnRROoaywUkZx4IWVOUClmLISZM6VKObk4lA7rd8ljKPu22ix64zHIUXNq0pwXqocpmh-iNowxBjQ6W1oexP2mjP9TVH_UdQg9IFi8QWeOWiW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884116729</pqid></control><display><type>article</type><title>Matrix product purifications for canonical ensembles and quantum number distributions</title><source>American Physical Society Journals</source><creator>Barthel, Thomas</creator><creatorcontrib>Barthel, Thomas</creatorcontrib><description>Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand-canonical ensemble, also when symmetries are exploited. This paper provides and demonstrates methods for the efficient computation of MPPs of canonical ensembles under utilization of symmetries. Furthermore, we present a scheme for the evaluation of global quantum number distributions using matrix product density operators (MPDOs). We provide exact matrix product representations for canonical infinite-temperature states, and discuss how they can be constructed alternatively by applying matrix product operators to vacuum-type states or by using entangler Hamiltonians. A demonstration of the techniques for Heisenberg spin-1/2 chains explains why the difference in the energy densities of canonical and grand-canonical ensembles decays as 1/L.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.94.115157</identifier><language>eng</language><subject>Computational efficiency ; Condensed matter ; Decay ; Mathematical analysis ; Operators ; Purification ; Quantum numbers ; Symmetry</subject><ispartof>Physical review. B, 2016-09, Vol.94 (11), Article 115157</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-2bd4509362a9aeeb1f8f3dfe99e82f54f7e58e87a71913c52998707c59521743</citedby><cites>FETCH-LOGICAL-c346t-2bd4509362a9aeeb1f8f3dfe99e82f54f7e58e87a71913c52998707c59521743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Barthel, Thomas</creatorcontrib><title>Matrix product purifications for canonical ensembles and quantum number distributions</title><title>Physical review. B</title><description>Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand-canonical ensemble, also when symmetries are exploited. This paper provides and demonstrates methods for the efficient computation of MPPs of canonical ensembles under utilization of symmetries. Furthermore, we present a scheme for the evaluation of global quantum number distributions using matrix product density operators (MPDOs). We provide exact matrix product representations for canonical infinite-temperature states, and discuss how they can be constructed alternatively by applying matrix product operators to vacuum-type states or by using entangler Hamiltonians. A demonstration of the techniques for Heisenberg spin-1/2 chains explains why the difference in the energy densities of canonical and grand-canonical ensembles decays as 1/L.</description><subject>Computational efficiency</subject><subject>Condensed matter</subject><subject>Decay</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Purification</subject><subject>Quantum numbers</subject><subject>Symmetry</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EElXpC3DykUuKndhx9ggVf1IRCJWz5ThrEZQ4rR0j-vYECpxmNZodjT5Czjlbcs6Ky-e3fXzBj-sliMmQXKojMstFCRlACcf_t2SnZBHjO2OMlwwUgxl5fTRjaD_pNgxNsiPdptC61pqxHXykbgjUGj_4yeko-oh93WGkxjd0l4wfU0996msMtGnjVFSnn8czcuJMF3Hxq3Oyub3ZrO6z9dPdw-pqndlClGOW142QDIoyN2AQa-4qVzQOAbDKnRROoaywUkZx4IWVOUClmLISZM6VKObk4lA7rd8ljKPu22ix64zHIUXNq0pwXqocpmh-iNowxBjQ6W1oexP2mjP9TVH_UdQg9IFi8QWeOWiW</recordid><startdate>20160926</startdate><enddate>20160926</enddate><creator>Barthel, Thomas</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160926</creationdate><title>Matrix product purifications for canonical ensembles and quantum number distributions</title><author>Barthel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-2bd4509362a9aeeb1f8f3dfe99e82f54f7e58e87a71913c52998707c59521743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational efficiency</topic><topic>Condensed matter</topic><topic>Decay</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Purification</topic><topic>Quantum numbers</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barthel, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barthel, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix product purifications for canonical ensembles and quantum number distributions</atitle><jtitle>Physical review. B</jtitle><date>2016-09-26</date><risdate>2016</risdate><volume>94</volume><issue>11</issue><artnum>115157</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand-canonical ensemble, also when symmetries are exploited. This paper provides and demonstrates methods for the efficient computation of MPPs of canonical ensembles under utilization of symmetries. Furthermore, we present a scheme for the evaluation of global quantum number distributions using matrix product density operators (MPDOs). We provide exact matrix product representations for canonical infinite-temperature states, and discuss how they can be constructed alternatively by applying matrix product operators to vacuum-type states or by using entangler Hamiltonians. A demonstration of the techniques for Heisenberg spin-1/2 chains explains why the difference in the energy densities of canonical and grand-canonical ensembles decays as 1/L.</abstract><doi>10.1103/PhysRevB.94.115157</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-9950 |
ispartof | Physical review. B, 2016-09, Vol.94 (11), Article 115157 |
issn | 2469-9950 2469-9969 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884116729 |
source | American Physical Society Journals |
subjects | Computational efficiency Condensed matter Decay Mathematical analysis Operators Purification Quantum numbers Symmetry |
title | Matrix product purifications for canonical ensembles and quantum number distributions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20product%20purifications%20for%20canonical%20ensembles%20and%20quantum%20number%20distributions&rft.jtitle=Physical%20review.%20B&rft.au=Barthel,%20Thomas&rft.date=2016-09-26&rft.volume=94&rft.issue=11&rft.artnum=115157&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.94.115157&rft_dat=%3Cproquest_cross%3E1884116729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884116729&rft_id=info:pmid/&rfr_iscdi=true |