Matrix product purifications for canonical ensembles and quantum number distributions

Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2016-09, Vol.94 (11), Article 115157
1. Verfasser: Barthel, Thomas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 11
container_start_page
container_title Physical review. B
container_volume 94
creator Barthel, Thomas
description Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand-canonical ensemble, also when symmetries are exploited. This paper provides and demonstrates methods for the efficient computation of MPPs of canonical ensembles under utilization of symmetries. Furthermore, we present a scheme for the evaluation of global quantum number distributions using matrix product density operators (MPDOs). We provide exact matrix product representations for canonical infinite-temperature states, and discuss how they can be constructed alternatively by applying matrix product operators to vacuum-type states or by using entangler Hamiltonians. A demonstration of the techniques for Heisenberg spin-1/2 chains explains why the difference in the energy densities of canonical and grand-canonical ensembles decays as 1/L.
doi_str_mv 10.1103/PhysRevB.94.115157
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884116729</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884116729</sourcerecordid><originalsourceid>FETCH-LOGICAL-c346t-2bd4509362a9aeeb1f8f3dfe99e82f54f7e58e87a71913c52998707c59521743</originalsourceid><addsrcrecordid>eNo9kM1OwzAQhC0EElXpC3DykUuKndhx9ggVf1IRCJWz5ThrEZQ4rR0j-vYECpxmNZodjT5Czjlbcs6Ky-e3fXzBj-sliMmQXKojMstFCRlACcf_t2SnZBHjO2OMlwwUgxl5fTRjaD_pNgxNsiPdptC61pqxHXykbgjUGj_4yeko-oh93WGkxjd0l4wfU0996msMtGnjVFSnn8czcuJMF3Hxq3Oyub3ZrO6z9dPdw-pqndlClGOW142QDIoyN2AQa-4qVzQOAbDKnRROoaywUkZx4IWVOUClmLISZM6VKObk4lA7rd8ljKPu22ix64zHIUXNq0pwXqocpmh-iNowxBjQ6W1oexP2mjP9TVH_UdQg9IFi8QWeOWiW</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884116729</pqid></control><display><type>article</type><title>Matrix product purifications for canonical ensembles and quantum number distributions</title><source>American Physical Society Journals</source><creator>Barthel, Thomas</creator><creatorcontrib>Barthel, Thomas</creatorcontrib><description>Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand-canonical ensemble, also when symmetries are exploited. This paper provides and demonstrates methods for the efficient computation of MPPs of canonical ensembles under utilization of symmetries. Furthermore, we present a scheme for the evaluation of global quantum number distributions using matrix product density operators (MPDOs). We provide exact matrix product representations for canonical infinite-temperature states, and discuss how they can be constructed alternatively by applying matrix product operators to vacuum-type states or by using entangler Hamiltonians. A demonstration of the techniques for Heisenberg spin-1/2 chains explains why the difference in the energy densities of canonical and grand-canonical ensembles decays as 1/L.</description><identifier>ISSN: 2469-9950</identifier><identifier>EISSN: 2469-9969</identifier><identifier>DOI: 10.1103/PhysRevB.94.115157</identifier><language>eng</language><subject>Computational efficiency ; Condensed matter ; Decay ; Mathematical analysis ; Operators ; Purification ; Quantum numbers ; Symmetry</subject><ispartof>Physical review. B, 2016-09, Vol.94 (11), Article 115157</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c346t-2bd4509362a9aeeb1f8f3dfe99e82f54f7e58e87a71913c52998707c59521743</citedby><cites>FETCH-LOGICAL-c346t-2bd4509362a9aeeb1f8f3dfe99e82f54f7e58e87a71913c52998707c59521743</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,2862,2863,27903,27904</link.rule.ids></links><search><creatorcontrib>Barthel, Thomas</creatorcontrib><title>Matrix product purifications for canonical ensembles and quantum number distributions</title><title>Physical review. B</title><description>Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand-canonical ensemble, also when symmetries are exploited. This paper provides and demonstrates methods for the efficient computation of MPPs of canonical ensembles under utilization of symmetries. Furthermore, we present a scheme for the evaluation of global quantum number distributions using matrix product density operators (MPDOs). We provide exact matrix product representations for canonical infinite-temperature states, and discuss how they can be constructed alternatively by applying matrix product operators to vacuum-type states or by using entangler Hamiltonians. A demonstration of the techniques for Heisenberg spin-1/2 chains explains why the difference in the energy densities of canonical and grand-canonical ensembles decays as 1/L.</description><subject>Computational efficiency</subject><subject>Condensed matter</subject><subject>Decay</subject><subject>Mathematical analysis</subject><subject>Operators</subject><subject>Purification</subject><subject>Quantum numbers</subject><subject>Symmetry</subject><issn>2469-9950</issn><issn>2469-9969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><recordid>eNo9kM1OwzAQhC0EElXpC3DykUuKndhx9ggVf1IRCJWz5ThrEZQ4rR0j-vYECpxmNZodjT5Czjlbcs6Ky-e3fXzBj-sliMmQXKojMstFCRlACcf_t2SnZBHjO2OMlwwUgxl5fTRjaD_pNgxNsiPdptC61pqxHXykbgjUGj_4yeko-oh93WGkxjd0l4wfU0996msMtGnjVFSnn8czcuJMF3Hxq3Oyub3ZrO6z9dPdw-pqndlClGOW142QDIoyN2AQa-4qVzQOAbDKnRROoaywUkZx4IWVOUClmLISZM6VKObk4lA7rd8ljKPu22ix64zHIUXNq0pwXqocpmh-iNowxBjQ6W1oexP2mjP9TVH_UdQg9IFi8QWeOWiW</recordid><startdate>20160926</startdate><enddate>20160926</enddate><creator>Barthel, Thomas</creator><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>H8D</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20160926</creationdate><title>Matrix product purifications for canonical ensembles and quantum number distributions</title><author>Barthel, Thomas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c346t-2bd4509362a9aeeb1f8f3dfe99e82f54f7e58e87a71913c52998707c59521743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Computational efficiency</topic><topic>Condensed matter</topic><topic>Decay</topic><topic>Mathematical analysis</topic><topic>Operators</topic><topic>Purification</topic><topic>Quantum numbers</topic><topic>Symmetry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barthel, Thomas</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical review. B</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barthel, Thomas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Matrix product purifications for canonical ensembles and quantum number distributions</atitle><jtitle>Physical review. B</jtitle><date>2016-09-26</date><risdate>2016</risdate><volume>94</volume><issue>11</issue><artnum>115157</artnum><issn>2469-9950</issn><eissn>2469-9969</eissn><abstract>Matrix product purifications (MPPs) are a very efficient tool for the simulation of strongly correlated quantum many-body systems at finite temperatures. When a system features symmetries, these can be used to reduce computation costs substantially. It is straightforward to compute an MPP of a grand-canonical ensemble, also when symmetries are exploited. This paper provides and demonstrates methods for the efficient computation of MPPs of canonical ensembles under utilization of symmetries. Furthermore, we present a scheme for the evaluation of global quantum number distributions using matrix product density operators (MPDOs). We provide exact matrix product representations for canonical infinite-temperature states, and discuss how they can be constructed alternatively by applying matrix product operators to vacuum-type states or by using entangler Hamiltonians. A demonstration of the techniques for Heisenberg spin-1/2 chains explains why the difference in the energy densities of canonical and grand-canonical ensembles decays as 1/L.</abstract><doi>10.1103/PhysRevB.94.115157</doi></addata></record>
fulltext fulltext
identifier ISSN: 2469-9950
ispartof Physical review. B, 2016-09, Vol.94 (11), Article 115157
issn 2469-9950
2469-9969
language eng
recordid cdi_proquest_miscellaneous_1884116729
source American Physical Society Journals
subjects Computational efficiency
Condensed matter
Decay
Mathematical analysis
Operators
Purification
Quantum numbers
Symmetry
title Matrix product purifications for canonical ensembles and quantum number distributions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A30%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Matrix%20product%20purifications%20for%20canonical%20ensembles%20and%20quantum%20number%20distributions&rft.jtitle=Physical%20review.%20B&rft.au=Barthel,%20Thomas&rft.date=2016-09-26&rft.volume=94&rft.issue=11&rft.artnum=115157&rft.issn=2469-9950&rft.eissn=2469-9969&rft_id=info:doi/10.1103/PhysRevB.94.115157&rft_dat=%3Cproquest_cross%3E1884116729%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884116729&rft_id=info:pmid/&rfr_iscdi=true