Modeling the Effects of a Normal-Stress-Dependent State Variable, Within the Rate- and State-Dependent Friction Framework, at Stepovers and Dip-Slip Faults
The development of the rate- and state-dependent friction framework (Dieterich Appl Geophys 116:790–806, 1978 ; J Geophys Res 84, 2161–2168, 1979 ; Ruina Friction laws and instabilities: a quasistatic analysis of some dry friction behavior, Ph.D. Thesis, Brown Univ., Providence, R.I., 1980 ; J Geoph...
Gespeichert in:
Veröffentlicht in: | Pure and applied geophysics 2017-03, Vol.174 (3), p.1361-1383 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1383 |
---|---|
container_issue | 3 |
container_start_page | 1361 |
container_title | Pure and applied geophysics |
container_volume | 174 |
creator | Ryan, Kenny J. Oglesby, David D. |
description | The development of the rate- and state-dependent friction framework (Dieterich Appl Geophys 116:790–806,
1978
; J Geophys Res 84, 2161–2168,
1979
; Ruina Friction laws and instabilities: a quasistatic analysis of some dry friction behavior, Ph.D. Thesis, Brown Univ., Providence, R.I.,
1980
; J Geophys Res 88:10359–10370,
1983
) includes the dependence of friction coefficient on normal stress (Linker and Dieterich J Geophys Res 97:4923–4940,
1992
); however, a direct dependence of the friction law on time-varying normal stress in dynamic stepover and dip-slip fault models has not yet been extensively explored. Using rate- and state-dependent friction laws and a 2-D dynamic finite element code (Barall J Int 178, 845–859,
2009
), we investigate the effect of the Linker–Dieterich dependence of state variable on normal stress at stepovers and dip-slip faults, where normal stress should not be constant with time (e.g., Harris and Day J Geophys Res 98:4461–4472,
1993
; Nielsen Geophys Res Lett 25:125–128,
1998
). Specifically, we use the relation d
ψ
/d
t
= −(
α
/
σ
)(d
σ
/d
t
) from Linker and Dieterich (J Geophys Res 97:4923–4940,
1992
), in which a change in normal stress leads to a change in state variable of the opposite sign. We investigate a range of values for alpha, which scales the impact of the normal stress change on state, from 0 to 0.5 (laboratory values range from 0.2 to 0.56). For stepovers, we find that adding normal-stress dependence to the state variable delays or stops re-nucleation on the secondary fault segment when compared to normal-stress-independent state evolution. This inhibition of jumping rupture is due to the fact that re-nucleation along the secondary segment occurs in areas of decreased normal stress in both compressional and dilational stepovers. However, the magnitude of such an effect differs between dilational and compressional systems. Additionally, it is well known that the asymmetric geometry of reverse and normal faults can lead to greater slip and a greater peak slip rate on reverse faults than on normal faults, given the same initial conditions for each (Nielsen Geophys Res Lett 25:125–128,
1998
; Oglesby et al. Science 280:1055–1059,
1998
; Oglesby and Archuleta J Geophys Res 105:13643–13653,
2000
; Oglesby et al. Bull Seismol Soc Am 90:616–628,
2000
). For dip-slip models, we find that adding the Linker–Dieterich normal stress dependence to the state variable serves to mitigate differences in peak slip rate between re |
doi_str_mv | 10.1007/s00024-017-1469-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884115358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1877842682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-9d1998080d74bc96475ea28a603b3e06888659533908b7d6aae858ab517760b83</originalsourceid><addsrcrecordid>eNqNkc1u1TAQRiMEEpfCA7CzxIZFXcaxndhL1PZSpAISl5-l5SST1iXXTm1fEM_Cy-I0LCokJFYeyef7pJlTVc8ZnDCA9lUCgFpQYC1lotG0flBtmKiBasabh9UGgHMqpOSPqycp3UABW6k31a93YcDJ-SuSr5GcjyP2OZEwEkveh7i3E93liCnRM5zRD-gz2WWbkXyx0dluwmPy1eVr5-_yH8sPJdYPK3QvtI2uzy74Mtg9_gjx2zGxSxfO4TvGdBc6czPdTW4mW3uYcnpaPRrtlPDZn_eo-rw9_3R6QS8_vHl7-vqS9kKoTPXAtFagYGhF1-tGtBJtrWwDvOMIjVKqkVpyrkF17dBYi0oq28lyggY6xY-ql2vvHMPtAVM2e5d6nCbrMRySYUoJxiSX_4O2rRJ1o-qCvvgLvQmH6MsiC1XcyFpAodhK9TGkFHE0c3R7G38aBmYxa1azpggzi1mzNNdrJhXWX2G81_zP0G-k9aR2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1871425240</pqid></control><display><type>article</type><title>Modeling the Effects of a Normal-Stress-Dependent State Variable, Within the Rate- and State-Dependent Friction Framework, at Stepovers and Dip-Slip Faults</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ryan, Kenny J. ; Oglesby, David D.</creator><creatorcontrib>Ryan, Kenny J. ; Oglesby, David D.</creatorcontrib><description>The development of the rate- and state-dependent friction framework (Dieterich Appl Geophys 116:790–806,
1978
; J Geophys Res 84, 2161–2168,
1979
; Ruina Friction laws and instabilities: a quasistatic analysis of some dry friction behavior, Ph.D. Thesis, Brown Univ., Providence, R.I.,
1980
; J Geophys Res 88:10359–10370,
1983
) includes the dependence of friction coefficient on normal stress (Linker and Dieterich J Geophys Res 97:4923–4940,
1992
); however, a direct dependence of the friction law on time-varying normal stress in dynamic stepover and dip-slip fault models has not yet been extensively explored. Using rate- and state-dependent friction laws and a 2-D dynamic finite element code (Barall J Int 178, 845–859,
2009
), we investigate the effect of the Linker–Dieterich dependence of state variable on normal stress at stepovers and dip-slip faults, where normal stress should not be constant with time (e.g., Harris and Day J Geophys Res 98:4461–4472,
1993
; Nielsen Geophys Res Lett 25:125–128,
1998
). Specifically, we use the relation d
ψ
/d
t
= −(
α
/
σ
)(d
σ
/d
t
) from Linker and Dieterich (J Geophys Res 97:4923–4940,
1992
), in which a change in normal stress leads to a change in state variable of the opposite sign. We investigate a range of values for alpha, which scales the impact of the normal stress change on state, from 0 to 0.5 (laboratory values range from 0.2 to 0.56). For stepovers, we find that adding normal-stress dependence to the state variable delays or stops re-nucleation on the secondary fault segment when compared to normal-stress-independent state evolution. This inhibition of jumping rupture is due to the fact that re-nucleation along the secondary segment occurs in areas of decreased normal stress in both compressional and dilational stepovers. However, the magnitude of such an effect differs between dilational and compressional systems. Additionally, it is well known that the asymmetric geometry of reverse and normal faults can lead to greater slip and a greater peak slip rate on reverse faults than on normal faults, given the same initial conditions for each (Nielsen Geophys Res Lett 25:125–128,
1998
; Oglesby et al. Science 280:1055–1059,
1998
; Oglesby and Archuleta J Geophys Res 105:13643–13653,
2000
; Oglesby et al. Bull Seismol Soc Am 90:616–628,
2000
). For dip-slip models, we find that adding the Linker–Dieterich normal stress dependence to the state variable serves to mitigate differences in peak slip rate between reverse and normal fault models. However, differences in total slip among reverse and normal fault models remain relatively unchanged. We also examine effects from initial shear stress (loading stress) and effects from incorporating a rate-strengthening zone on the uppermost portion of a reverse and a normal fault.</description><identifier>ISSN: 0033-4553</identifier><identifier>EISSN: 1420-9136</identifier><identifier>DOI: 10.1007/s00024-017-1469-2</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Dynamics ; Earth and Environmental Science ; Earth Sciences ; Earthquakes ; Fault lines ; Faults ; Friction ; Geological faults ; Geophysics/Geodesy ; Nucleation ; Segments ; Shear stress ; Slip ; State variable ; Stress ; Stresses</subject><ispartof>Pure and applied geophysics, 2017-03, Vol.174 (3), p.1361-1383</ispartof><rights>Springer International Publishing 2017</rights><rights>Pure and Applied Geophysics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-9d1998080d74bc96475ea28a603b3e06888659533908b7d6aae858ab517760b83</citedby><cites>FETCH-LOGICAL-c448t-9d1998080d74bc96475ea28a603b3e06888659533908b7d6aae858ab517760b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00024-017-1469-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00024-017-1469-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids></links><search><creatorcontrib>Ryan, Kenny J.</creatorcontrib><creatorcontrib>Oglesby, David D.</creatorcontrib><title>Modeling the Effects of a Normal-Stress-Dependent State Variable, Within the Rate- and State-Dependent Friction Framework, at Stepovers and Dip-Slip Faults</title><title>Pure and applied geophysics</title><addtitle>Pure Appl. Geophys</addtitle><description>The development of the rate- and state-dependent friction framework (Dieterich Appl Geophys 116:790–806,
1978
; J Geophys Res 84, 2161–2168,
1979
; Ruina Friction laws and instabilities: a quasistatic analysis of some dry friction behavior, Ph.D. Thesis, Brown Univ., Providence, R.I.,
1980
; J Geophys Res 88:10359–10370,
1983
) includes the dependence of friction coefficient on normal stress (Linker and Dieterich J Geophys Res 97:4923–4940,
1992
); however, a direct dependence of the friction law on time-varying normal stress in dynamic stepover and dip-slip fault models has not yet been extensively explored. Using rate- and state-dependent friction laws and a 2-D dynamic finite element code (Barall J Int 178, 845–859,
2009
), we investigate the effect of the Linker–Dieterich dependence of state variable on normal stress at stepovers and dip-slip faults, where normal stress should not be constant with time (e.g., Harris and Day J Geophys Res 98:4461–4472,
1993
; Nielsen Geophys Res Lett 25:125–128,
1998
). Specifically, we use the relation d
ψ
/d
t
= −(
α
/
σ
)(d
σ
/d
t
) from Linker and Dieterich (J Geophys Res 97:4923–4940,
1992
), in which a change in normal stress leads to a change in state variable of the opposite sign. We investigate a range of values for alpha, which scales the impact of the normal stress change on state, from 0 to 0.5 (laboratory values range from 0.2 to 0.56). For stepovers, we find that adding normal-stress dependence to the state variable delays or stops re-nucleation on the secondary fault segment when compared to normal-stress-independent state evolution. This inhibition of jumping rupture is due to the fact that re-nucleation along the secondary segment occurs in areas of decreased normal stress in both compressional and dilational stepovers. However, the magnitude of such an effect differs between dilational and compressional systems. Additionally, it is well known that the asymmetric geometry of reverse and normal faults can lead to greater slip and a greater peak slip rate on reverse faults than on normal faults, given the same initial conditions for each (Nielsen Geophys Res Lett 25:125–128,
1998
; Oglesby et al. Science 280:1055–1059,
1998
; Oglesby and Archuleta J Geophys Res 105:13643–13653,
2000
; Oglesby et al. Bull Seismol Soc Am 90:616–628,
2000
). For dip-slip models, we find that adding the Linker–Dieterich normal stress dependence to the state variable serves to mitigate differences in peak slip rate between reverse and normal fault models. However, differences in total slip among reverse and normal fault models remain relatively unchanged. We also examine effects from initial shear stress (loading stress) and effects from incorporating a rate-strengthening zone on the uppermost portion of a reverse and a normal fault.</description><subject>Dynamics</subject><subject>Earth and Environmental Science</subject><subject>Earth Sciences</subject><subject>Earthquakes</subject><subject>Fault lines</subject><subject>Faults</subject><subject>Friction</subject><subject>Geological faults</subject><subject>Geophysics/Geodesy</subject><subject>Nucleation</subject><subject>Segments</subject><subject>Shear stress</subject><subject>Slip</subject><subject>State variable</subject><subject>Stress</subject><subject>Stresses</subject><issn>0033-4553</issn><issn>1420-9136</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkc1u1TAQRiMEEpfCA7CzxIZFXcaxndhL1PZSpAISl5-l5SST1iXXTm1fEM_Cy-I0LCokJFYeyef7pJlTVc8ZnDCA9lUCgFpQYC1lotG0flBtmKiBasabh9UGgHMqpOSPqycp3UABW6k31a93YcDJ-SuSr5GcjyP2OZEwEkveh7i3E93liCnRM5zRD-gz2WWbkXyx0dluwmPy1eVr5-_yH8sPJdYPK3QvtI2uzy74Mtg9_gjx2zGxSxfO4TvGdBc6czPdTW4mW3uYcnpaPRrtlPDZn_eo-rw9_3R6QS8_vHl7-vqS9kKoTPXAtFagYGhF1-tGtBJtrWwDvOMIjVKqkVpyrkF17dBYi0oq28lyggY6xY-ql2vvHMPtAVM2e5d6nCbrMRySYUoJxiSX_4O2rRJ1o-qCvvgLvQmH6MsiC1XcyFpAodhK9TGkFHE0c3R7G38aBmYxa1azpggzi1mzNNdrJhXWX2G81_zP0G-k9aR2</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Ryan, Kenny J.</creator><creator>Oglesby, David D.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope></search><sort><creationdate>20170301</creationdate><title>Modeling the Effects of a Normal-Stress-Dependent State Variable, Within the Rate- and State-Dependent Friction Framework, at Stepovers and Dip-Slip Faults</title><author>Ryan, Kenny J. ; Oglesby, David D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-9d1998080d74bc96475ea28a603b3e06888659533908b7d6aae858ab517760b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Dynamics</topic><topic>Earth and Environmental Science</topic><topic>Earth Sciences</topic><topic>Earthquakes</topic><topic>Fault lines</topic><topic>Faults</topic><topic>Friction</topic><topic>Geological faults</topic><topic>Geophysics/Geodesy</topic><topic>Nucleation</topic><topic>Segments</topic><topic>Shear stress</topic><topic>Slip</topic><topic>State variable</topic><topic>Stress</topic><topic>Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ryan, Kenny J.</creatorcontrib><creatorcontrib>Oglesby, David D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Pure and applied geophysics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ryan, Kenny J.</au><au>Oglesby, David D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling the Effects of a Normal-Stress-Dependent State Variable, Within the Rate- and State-Dependent Friction Framework, at Stepovers and Dip-Slip Faults</atitle><jtitle>Pure and applied geophysics</jtitle><stitle>Pure Appl. Geophys</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>174</volume><issue>3</issue><spage>1361</spage><epage>1383</epage><pages>1361-1383</pages><issn>0033-4553</issn><eissn>1420-9136</eissn><abstract>The development of the rate- and state-dependent friction framework (Dieterich Appl Geophys 116:790–806,
1978
; J Geophys Res 84, 2161–2168,
1979
; Ruina Friction laws and instabilities: a quasistatic analysis of some dry friction behavior, Ph.D. Thesis, Brown Univ., Providence, R.I.,
1980
; J Geophys Res 88:10359–10370,
1983
) includes the dependence of friction coefficient on normal stress (Linker and Dieterich J Geophys Res 97:4923–4940,
1992
); however, a direct dependence of the friction law on time-varying normal stress in dynamic stepover and dip-slip fault models has not yet been extensively explored. Using rate- and state-dependent friction laws and a 2-D dynamic finite element code (Barall J Int 178, 845–859,
2009
), we investigate the effect of the Linker–Dieterich dependence of state variable on normal stress at stepovers and dip-slip faults, where normal stress should not be constant with time (e.g., Harris and Day J Geophys Res 98:4461–4472,
1993
; Nielsen Geophys Res Lett 25:125–128,
1998
). Specifically, we use the relation d
ψ
/d
t
= −(
α
/
σ
)(d
σ
/d
t
) from Linker and Dieterich (J Geophys Res 97:4923–4940,
1992
), in which a change in normal stress leads to a change in state variable of the opposite sign. We investigate a range of values for alpha, which scales the impact of the normal stress change on state, from 0 to 0.5 (laboratory values range from 0.2 to 0.56). For stepovers, we find that adding normal-stress dependence to the state variable delays or stops re-nucleation on the secondary fault segment when compared to normal-stress-independent state evolution. This inhibition of jumping rupture is due to the fact that re-nucleation along the secondary segment occurs in areas of decreased normal stress in both compressional and dilational stepovers. However, the magnitude of such an effect differs between dilational and compressional systems. Additionally, it is well known that the asymmetric geometry of reverse and normal faults can lead to greater slip and a greater peak slip rate on reverse faults than on normal faults, given the same initial conditions for each (Nielsen Geophys Res Lett 25:125–128,
1998
; Oglesby et al. Science 280:1055–1059,
1998
; Oglesby and Archuleta J Geophys Res 105:13643–13653,
2000
; Oglesby et al. Bull Seismol Soc Am 90:616–628,
2000
). For dip-slip models, we find that adding the Linker–Dieterich normal stress dependence to the state variable serves to mitigate differences in peak slip rate between reverse and normal fault models. However, differences in total slip among reverse and normal fault models remain relatively unchanged. We also examine effects from initial shear stress (loading stress) and effects from incorporating a rate-strengthening zone on the uppermost portion of a reverse and a normal fault.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s00024-017-1469-2</doi><tpages>23</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0033-4553 |
ispartof | Pure and applied geophysics, 2017-03, Vol.174 (3), p.1361-1383 |
issn | 0033-4553 1420-9136 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884115358 |
source | SpringerLink Journals - AutoHoldings |
subjects | Dynamics Earth and Environmental Science Earth Sciences Earthquakes Fault lines Faults Friction Geological faults Geophysics/Geodesy Nucleation Segments Shear stress Slip State variable Stress Stresses |
title | Modeling the Effects of a Normal-Stress-Dependent State Variable, Within the Rate- and State-Dependent Friction Framework, at Stepovers and Dip-Slip Faults |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T15%3A20%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20the%20Effects%20of%20a%20Normal-Stress-Dependent%20State%20Variable,%20Within%20the%20Rate-%20and%20State-Dependent%20Friction%20Framework,%20at%20Stepovers%20and%20Dip-Slip%20Faults&rft.jtitle=Pure%20and%20applied%20geophysics&rft.au=Ryan,%20Kenny%20J.&rft.date=2017-03-01&rft.volume=174&rft.issue=3&rft.spage=1361&rft.epage=1383&rft.pages=1361-1383&rft.issn=0033-4553&rft.eissn=1420-9136&rft_id=info:doi/10.1007/s00024-017-1469-2&rft_dat=%3Cproquest_cross%3E1877842682%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1871425240&rft_id=info:pmid/&rfr_iscdi=true |