Metabolic engineering of Escherichia coli for microbial production of L‐methionine

ABSTRACT L‐methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over‐expression of homoserine O‐succinyltransferase MetA to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biotechnology and bioengineering 2017-04, Vol.114 (4), p.843-851
Hauptverfasser: Huang, Jian‐Feng, Liu, Zhi‐Qiang, Jin, Li‐Qun, Tang, Xiao‐Ling, Shen, Zhen‐Yang, Yin, Huan‐Huan, Zheng, Yu‐Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 851
container_issue 4
container_start_page 843
container_title Biotechnology and bioengineering
container_volume 114
creator Huang, Jian‐Feng
Liu, Zhi‐Qiang
Jin, Li‐Qun
Tang, Xiao‐Ling
Shen, Zhen‐Yang
Yin, Huan‐Huan
Zheng, Yu‐Guo
description ABSTRACT L‐methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over‐expression of homoserine O‐succinyltransferase MetA together with efflux transporter YjeH, resulting in L‐methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L‐methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L‐ethionine concentration and accumulated L‐methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5‐fold increase in L‐methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2S2O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L‐methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L‐methionine. Biotechnol. Bioeng. 2017;114: 843–851. © 2016 Wiley Periodicals, Inc. Methionine is an essential sulfur containing amino acid which is wildly used in feed stock industry and for medical purpose. The authors engineered Escherichia coli W3110 to produce L‐methionine from glucose. The main strategies include disruption of metJ, overexpression of homoserine O‐transsuccinylase (metA) together with methionine exporter (yjeH), partial disruption of methionine transporter MetD and deletion of lysA to block the competitive pathway. The fed‐batch fermentation of the final strain resulted in 9.75 g/L of L‐methionine after optimization.
doi_str_mv 10.1002/bit.26198
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884114777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4315976541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5508-792e5cdfd6d4928b903f6d53953a273500d3abbef01b633f2e9457a98e5b0ddc3</originalsourceid><addsrcrecordid>eNqN0c1OFTEUB_DGSOQKLnwBM4kbXAycttOvpRIUkkvcXNdNv4ZbMh84nYlhxyP4jD6JBy-wMNGwak7yy7_t-RPylsIxBWAnPs_HTFKjX5AVBaNqYAZekhUAyJoLw_bJ61KucVRayldknynFOMIV2Vym2fmxy6FKw1UeUprycFWNbXVWwhaHsM2uCgiqdpyqPodp9Nl11c00xiXMeRzu8frX3c8-zVscMeOQ7LWuK-nNw3lAvn0-25ye1-uvXy5OP67rIAToWhmWRIhtlLExTHsDvJVRcCO4Y4oLgMid96kF6iXnLUumEcoZnYSHGAM_IEe7XHzM9yWV2fa5hNR1bkjjUizVuqG0UUo9gyqlmZaseQblgishQSB9_xe9HpdpwD9bBpor2mDm_xReCwzjOEX1Yadww6VMqbU3U-7ddGsp2PuaLdZs_9SM9t1D4uL7FJ_kY68ITnbgR-7S7b-T7KeLzS7yN4m3r7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1870235331</pqid></control><display><type>article</type><title>Metabolic engineering of Escherichia coli for microbial production of L‐methionine</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Jian‐Feng ; Liu, Zhi‐Qiang ; Jin, Li‐Qun ; Tang, Xiao‐Ling ; Shen, Zhen‐Yang ; Yin, Huan‐Huan ; Zheng, Yu‐Guo</creator><creatorcontrib>Huang, Jian‐Feng ; Liu, Zhi‐Qiang ; Jin, Li‐Qun ; Tang, Xiao‐Ling ; Shen, Zhen‐Yang ; Yin, Huan‐Huan ; Zheng, Yu‐Guo</creatorcontrib><description>ABSTRACT L‐methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over‐expression of homoserine O‐succinyltransferase MetA together with efflux transporter YjeH, resulting in L‐methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L‐methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L‐ethionine concentration and accumulated L‐methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5‐fold increase in L‐methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2S2O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L‐methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L‐methionine. Biotechnol. Bioeng. 2017;114: 843–851. © 2016 Wiley Periodicals, Inc. Methionine is an essential sulfur containing amino acid which is wildly used in feed stock industry and for medical purpose. The authors engineered Escherichia coli W3110 to produce L‐methionine from glucose. The main strategies include disruption of metJ, overexpression of homoserine O‐transsuccinylase (metA) together with methionine exporter (yjeH), partial disruption of methionine transporter MetD and deletion of lysA to block the competitive pathway. The fed‐batch fermentation of the final strain resulted in 9.75 g/L of L‐methionine after optimization.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26198</identifier><identifier>PMID: 27723097</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; Batch Cell Culture Techniques ; Bioengineering ; Bioreactors ; Bioreactors - microbiology ; Biosynthesis ; Biotechnology ; Cloning, Molecular ; competing pathway ; Deactivation ; Deletion ; Disruption ; E coli ; Efflux ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Ethionine ; Fermentation ; Gene Knockout Techniques ; import system ; Inactivation ; Lysine ; Lysine - metabolism ; L‐methionine ; Metabolic engineering ; Metabolic Engineering - methods ; Metabolic Networks and Pathways ; Methionine ; Methionine - analysis ; Methionine - metabolism ; Microbiology ; Microorganisms ; Na2S2O3 ; Optimization ; Pharmaceuticals ; Plasmids - genetics ; Sodium thiosulfate ; Therapeutic applications ; Threonine - metabolism ; Transcription ; Transporter ; W3110</subject><ispartof>Biotechnology and bioengineering, 2017-04, Vol.114 (4), p.843-851</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5508-792e5cdfd6d4928b903f6d53953a273500d3abbef01b633f2e9457a98e5b0ddc3</citedby><cites>FETCH-LOGICAL-c5508-792e5cdfd6d4928b903f6d53953a273500d3abbef01b633f2e9457a98e5b0ddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.26198$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.26198$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27723097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jian‐Feng</creatorcontrib><creatorcontrib>Liu, Zhi‐Qiang</creatorcontrib><creatorcontrib>Jin, Li‐Qun</creatorcontrib><creatorcontrib>Tang, Xiao‐Ling</creatorcontrib><creatorcontrib>Shen, Zhen‐Yang</creatorcontrib><creatorcontrib>Yin, Huan‐Huan</creatorcontrib><creatorcontrib>Zheng, Yu‐Guo</creatorcontrib><title>Metabolic engineering of Escherichia coli for microbial production of L‐methionine</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>ABSTRACT L‐methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over‐expression of homoserine O‐succinyltransferase MetA together with efflux transporter YjeH, resulting in L‐methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L‐methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L‐ethionine concentration and accumulated L‐methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5‐fold increase in L‐methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2S2O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L‐methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L‐methionine. Biotechnol. Bioeng. 2017;114: 843–851. © 2016 Wiley Periodicals, Inc. Methionine is an essential sulfur containing amino acid which is wildly used in feed stock industry and for medical purpose. The authors engineered Escherichia coli W3110 to produce L‐methionine from glucose. The main strategies include disruption of metJ, overexpression of homoserine O‐transsuccinylase (metA) together with methionine exporter (yjeH), partial disruption of methionine transporter MetD and deletion of lysA to block the competitive pathway. The fed‐batch fermentation of the final strain resulted in 9.75 g/L of L‐methionine after optimization.</description><subject>Bacteria</subject><subject>Batch Cell Culture Techniques</subject><subject>Bioengineering</subject><subject>Bioreactors</subject><subject>Bioreactors - microbiology</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Cloning, Molecular</subject><subject>competing pathway</subject><subject>Deactivation</subject><subject>Deletion</subject><subject>Disruption</subject><subject>E coli</subject><subject>Efflux</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Ethionine</subject><subject>Fermentation</subject><subject>Gene Knockout Techniques</subject><subject>import system</subject><subject>Inactivation</subject><subject>Lysine</subject><subject>Lysine - metabolism</subject><subject>L‐methionine</subject><subject>Metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic Networks and Pathways</subject><subject>Methionine</subject><subject>Methionine - analysis</subject><subject>Methionine - metabolism</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Na2S2O3</subject><subject>Optimization</subject><subject>Pharmaceuticals</subject><subject>Plasmids - genetics</subject><subject>Sodium thiosulfate</subject><subject>Therapeutic applications</subject><subject>Threonine - metabolism</subject><subject>Transcription</subject><subject>Transporter</subject><subject>W3110</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c1OFTEUB_DGSOQKLnwBM4kbXAycttOvpRIUkkvcXNdNv4ZbMh84nYlhxyP4jD6JBy-wMNGwak7yy7_t-RPylsIxBWAnPs_HTFKjX5AVBaNqYAZekhUAyJoLw_bJ61KucVRayldknynFOMIV2Vym2fmxy6FKw1UeUprycFWNbXVWwhaHsM2uCgiqdpyqPodp9Nl11c00xiXMeRzu8frX3c8-zVscMeOQ7LWuK-nNw3lAvn0-25ye1-uvXy5OP67rIAToWhmWRIhtlLExTHsDvJVRcCO4Y4oLgMid96kF6iXnLUumEcoZnYSHGAM_IEe7XHzM9yWV2fa5hNR1bkjjUizVuqG0UUo9gyqlmZaseQblgishQSB9_xe9HpdpwD9bBpor2mDm_xReCwzjOEX1Yadww6VMqbU3U-7ddGsp2PuaLdZs_9SM9t1D4uL7FJ_kY68ITnbgR-7S7b-T7KeLzS7yN4m3r7Q</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Huang, Jian‐Feng</creator><creator>Liu, Zhi‐Qiang</creator><creator>Jin, Li‐Qun</creator><creator>Tang, Xiao‐Ling</creator><creator>Shen, Zhen‐Yang</creator><creator>Yin, Huan‐Huan</creator><creator>Zheng, Yu‐Guo</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope></search><sort><creationdate>201704</creationdate><title>Metabolic engineering of Escherichia coli for microbial production of L‐methionine</title><author>Huang, Jian‐Feng ; Liu, Zhi‐Qiang ; Jin, Li‐Qun ; Tang, Xiao‐Ling ; Shen, Zhen‐Yang ; Yin, Huan‐Huan ; Zheng, Yu‐Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5508-792e5cdfd6d4928b903f6d53953a273500d3abbef01b633f2e9457a98e5b0ddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Batch Cell Culture Techniques</topic><topic>Bioengineering</topic><topic>Bioreactors</topic><topic>Bioreactors - microbiology</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Cloning, Molecular</topic><topic>competing pathway</topic><topic>Deactivation</topic><topic>Deletion</topic><topic>Disruption</topic><topic>E coli</topic><topic>Efflux</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Ethionine</topic><topic>Fermentation</topic><topic>Gene Knockout Techniques</topic><topic>import system</topic><topic>Inactivation</topic><topic>Lysine</topic><topic>Lysine - metabolism</topic><topic>L‐methionine</topic><topic>Metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic Networks and Pathways</topic><topic>Methionine</topic><topic>Methionine - analysis</topic><topic>Methionine - metabolism</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Na2S2O3</topic><topic>Optimization</topic><topic>Pharmaceuticals</topic><topic>Plasmids - genetics</topic><topic>Sodium thiosulfate</topic><topic>Therapeutic applications</topic><topic>Threonine - metabolism</topic><topic>Transcription</topic><topic>Transporter</topic><topic>W3110</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jian‐Feng</creatorcontrib><creatorcontrib>Liu, Zhi‐Qiang</creatorcontrib><creatorcontrib>Jin, Li‐Qun</creatorcontrib><creatorcontrib>Tang, Xiao‐Ling</creatorcontrib><creatorcontrib>Shen, Zhen‐Yang</creatorcontrib><creatorcontrib>Yin, Huan‐Huan</creatorcontrib><creatorcontrib>Zheng, Yu‐Guo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jian‐Feng</au><au>Liu, Zhi‐Qiang</au><au>Jin, Li‐Qun</au><au>Tang, Xiao‐Ling</au><au>Shen, Zhen‐Yang</au><au>Yin, Huan‐Huan</au><au>Zheng, Yu‐Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Escherichia coli for microbial production of L‐methionine</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2017-04</date><risdate>2017</risdate><volume>114</volume><issue>4</issue><spage>843</spage><epage>851</epage><pages>843-851</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>ABSTRACT L‐methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over‐expression of homoserine O‐succinyltransferase MetA together with efflux transporter YjeH, resulting in L‐methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L‐methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L‐ethionine concentration and accumulated L‐methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5‐fold increase in L‐methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2S2O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L‐methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L‐methionine. Biotechnol. Bioeng. 2017;114: 843–851. © 2016 Wiley Periodicals, Inc. Methionine is an essential sulfur containing amino acid which is wildly used in feed stock industry and for medical purpose. The authors engineered Escherichia coli W3110 to produce L‐methionine from glucose. The main strategies include disruption of metJ, overexpression of homoserine O‐transsuccinylase (metA) together with methionine exporter (yjeH), partial disruption of methionine transporter MetD and deletion of lysA to block the competitive pathway. The fed‐batch fermentation of the final strain resulted in 9.75 g/L of L‐methionine after optimization.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27723097</pmid><doi>10.1002/bit.26198</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2017-04, Vol.114 (4), p.843-851
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_1884114777
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bacteria
Batch Cell Culture Techniques
Bioengineering
Bioreactors
Bioreactors - microbiology
Biosynthesis
Biotechnology
Cloning, Molecular
competing pathway
Deactivation
Deletion
Disruption
E coli
Efflux
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Ethionine
Fermentation
Gene Knockout Techniques
import system
Inactivation
Lysine
Lysine - metabolism
L‐methionine
Metabolic engineering
Metabolic Engineering - methods
Metabolic Networks and Pathways
Methionine
Methionine - analysis
Methionine - metabolism
Microbiology
Microorganisms
Na2S2O3
Optimization
Pharmaceuticals
Plasmids - genetics
Sodium thiosulfate
Therapeutic applications
Threonine - metabolism
Transcription
Transporter
W3110
title Metabolic engineering of Escherichia coli for microbial production of L‐methionine
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Escherichia%20coli%20for%20microbial%20production%20of%20L%E2%80%90methionine&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Huang,%20Jian%E2%80%90Feng&rft.date=2017-04&rft.volume=114&rft.issue=4&rft.spage=843&rft.epage=851&rft.pages=843-851&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.26198&rft_dat=%3Cproquest_cross%3E4315976541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1870235331&rft_id=info:pmid/27723097&rfr_iscdi=true