Metabolic engineering of Escherichia coli for microbial production of L‐methionine
ABSTRACT L‐methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over‐expression of homoserine O‐succinyltransferase MetA to...
Gespeichert in:
Veröffentlicht in: | Biotechnology and bioengineering 2017-04, Vol.114 (4), p.843-851 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 851 |
---|---|
container_issue | 4 |
container_start_page | 843 |
container_title | Biotechnology and bioengineering |
container_volume | 114 |
creator | Huang, Jian‐Feng Liu, Zhi‐Qiang Jin, Li‐Qun Tang, Xiao‐Ling Shen, Zhen‐Yang Yin, Huan‐Huan Zheng, Yu‐Guo |
description | ABSTRACT
L‐methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over‐expression of homoserine O‐succinyltransferase MetA together with efflux transporter YjeH, resulting in L‐methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L‐methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L‐ethionine concentration and accumulated L‐methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5‐fold increase in L‐methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2S2O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L‐methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L‐methionine. Biotechnol. Bioeng. 2017;114: 843–851. © 2016 Wiley Periodicals, Inc.
Methionine is an essential sulfur containing amino acid which is wildly used in feed stock industry and for medical purpose. The authors engineered Escherichia coli W3110 to produce L‐methionine from glucose. The main strategies include disruption of metJ, overexpression of homoserine O‐transsuccinylase (metA) together with methionine exporter (yjeH), partial disruption of methionine transporter MetD and deletion of lysA to block the competitive pathway. The fed‐batch fermentation of the final strain resulted in 9.75 g/L of L‐methionine after optimization. |
doi_str_mv | 10.1002/bit.26198 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884114777</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4315976541</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5508-792e5cdfd6d4928b903f6d53953a273500d3abbef01b633f2e9457a98e5b0ddc3</originalsourceid><addsrcrecordid>eNqN0c1OFTEUB_DGSOQKLnwBM4kbXAycttOvpRIUkkvcXNdNv4ZbMh84nYlhxyP4jD6JBy-wMNGwak7yy7_t-RPylsIxBWAnPs_HTFKjX5AVBaNqYAZekhUAyJoLw_bJ61KucVRayldknynFOMIV2Vym2fmxy6FKw1UeUprycFWNbXVWwhaHsM2uCgiqdpyqPodp9Nl11c00xiXMeRzu8frX3c8-zVscMeOQ7LWuK-nNw3lAvn0-25ye1-uvXy5OP67rIAToWhmWRIhtlLExTHsDvJVRcCO4Y4oLgMid96kF6iXnLUumEcoZnYSHGAM_IEe7XHzM9yWV2fa5hNR1bkjjUizVuqG0UUo9gyqlmZaseQblgishQSB9_xe9HpdpwD9bBpor2mDm_xReCwzjOEX1Yadww6VMqbU3U-7ddGsp2PuaLdZs_9SM9t1D4uL7FJ_kY68ITnbgR-7S7b-T7KeLzS7yN4m3r7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1870235331</pqid></control><display><type>article</type><title>Metabolic engineering of Escherichia coli for microbial production of L‐methionine</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Jian‐Feng ; Liu, Zhi‐Qiang ; Jin, Li‐Qun ; Tang, Xiao‐Ling ; Shen, Zhen‐Yang ; Yin, Huan‐Huan ; Zheng, Yu‐Guo</creator><creatorcontrib>Huang, Jian‐Feng ; Liu, Zhi‐Qiang ; Jin, Li‐Qun ; Tang, Xiao‐Ling ; Shen, Zhen‐Yang ; Yin, Huan‐Huan ; Zheng, Yu‐Guo</creatorcontrib><description>ABSTRACT
L‐methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over‐expression of homoserine O‐succinyltransferase MetA together with efflux transporter YjeH, resulting in L‐methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L‐methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L‐ethionine concentration and accumulated L‐methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5‐fold increase in L‐methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2S2O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L‐methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L‐methionine. Biotechnol. Bioeng. 2017;114: 843–851. © 2016 Wiley Periodicals, Inc.
Methionine is an essential sulfur containing amino acid which is wildly used in feed stock industry and for medical purpose. The authors engineered Escherichia coli W3110 to produce L‐methionine from glucose. The main strategies include disruption of metJ, overexpression of homoserine O‐transsuccinylase (metA) together with methionine exporter (yjeH), partial disruption of methionine transporter MetD and deletion of lysA to block the competitive pathway. The fed‐batch fermentation of the final strain resulted in 9.75 g/L of L‐methionine after optimization.</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.26198</identifier><identifier>PMID: 27723097</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Bacteria ; Batch Cell Culture Techniques ; Bioengineering ; Bioreactors ; Bioreactors - microbiology ; Biosynthesis ; Biotechnology ; Cloning, Molecular ; competing pathway ; Deactivation ; Deletion ; Disruption ; E coli ; Efflux ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Ethionine ; Fermentation ; Gene Knockout Techniques ; import system ; Inactivation ; Lysine ; Lysine - metabolism ; L‐methionine ; Metabolic engineering ; Metabolic Engineering - methods ; Metabolic Networks and Pathways ; Methionine ; Methionine - analysis ; Methionine - metabolism ; Microbiology ; Microorganisms ; Na2S2O3 ; Optimization ; Pharmaceuticals ; Plasmids - genetics ; Sodium thiosulfate ; Therapeutic applications ; Threonine - metabolism ; Transcription ; Transporter ; W3110</subject><ispartof>Biotechnology and bioengineering, 2017-04, Vol.114 (4), p.843-851</ispartof><rights>2016 Wiley Periodicals, Inc.</rights><rights>2017 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5508-792e5cdfd6d4928b903f6d53953a273500d3abbef01b633f2e9457a98e5b0ddc3</citedby><cites>FETCH-LOGICAL-c5508-792e5cdfd6d4928b903f6d53953a273500d3abbef01b633f2e9457a98e5b0ddc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fbit.26198$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fbit.26198$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,777,781,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/27723097$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Huang, Jian‐Feng</creatorcontrib><creatorcontrib>Liu, Zhi‐Qiang</creatorcontrib><creatorcontrib>Jin, Li‐Qun</creatorcontrib><creatorcontrib>Tang, Xiao‐Ling</creatorcontrib><creatorcontrib>Shen, Zhen‐Yang</creatorcontrib><creatorcontrib>Yin, Huan‐Huan</creatorcontrib><creatorcontrib>Zheng, Yu‐Guo</creatorcontrib><title>Metabolic engineering of Escherichia coli for microbial production of L‐methionine</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol Bioeng</addtitle><description>ABSTRACT
L‐methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over‐expression of homoserine O‐succinyltransferase MetA together with efflux transporter YjeH, resulting in L‐methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L‐methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L‐ethionine concentration and accumulated L‐methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5‐fold increase in L‐methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2S2O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L‐methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L‐methionine. Biotechnol. Bioeng. 2017;114: 843–851. © 2016 Wiley Periodicals, Inc.
Methionine is an essential sulfur containing amino acid which is wildly used in feed stock industry and for medical purpose. The authors engineered Escherichia coli W3110 to produce L‐methionine from glucose. The main strategies include disruption of metJ, overexpression of homoserine O‐transsuccinylase (metA) together with methionine exporter (yjeH), partial disruption of methionine transporter MetD and deletion of lysA to block the competitive pathway. The fed‐batch fermentation of the final strain resulted in 9.75 g/L of L‐methionine after optimization.</description><subject>Bacteria</subject><subject>Batch Cell Culture Techniques</subject><subject>Bioengineering</subject><subject>Bioreactors</subject><subject>Bioreactors - microbiology</subject><subject>Biosynthesis</subject><subject>Biotechnology</subject><subject>Cloning, Molecular</subject><subject>competing pathway</subject><subject>Deactivation</subject><subject>Deletion</subject><subject>Disruption</subject><subject>E coli</subject><subject>Efflux</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Ethionine</subject><subject>Fermentation</subject><subject>Gene Knockout Techniques</subject><subject>import system</subject><subject>Inactivation</subject><subject>Lysine</subject><subject>Lysine - metabolism</subject><subject>L‐methionine</subject><subject>Metabolic engineering</subject><subject>Metabolic Engineering - methods</subject><subject>Metabolic Networks and Pathways</subject><subject>Methionine</subject><subject>Methionine - analysis</subject><subject>Methionine - metabolism</subject><subject>Microbiology</subject><subject>Microorganisms</subject><subject>Na2S2O3</subject><subject>Optimization</subject><subject>Pharmaceuticals</subject><subject>Plasmids - genetics</subject><subject>Sodium thiosulfate</subject><subject>Therapeutic applications</subject><subject>Threonine - metabolism</subject><subject>Transcription</subject><subject>Transporter</subject><subject>W3110</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqN0c1OFTEUB_DGSOQKLnwBM4kbXAycttOvpRIUkkvcXNdNv4ZbMh84nYlhxyP4jD6JBy-wMNGwak7yy7_t-RPylsIxBWAnPs_HTFKjX5AVBaNqYAZekhUAyJoLw_bJ61KucVRayldknynFOMIV2Vym2fmxy6FKw1UeUprycFWNbXVWwhaHsM2uCgiqdpyqPodp9Nl11c00xiXMeRzu8frX3c8-zVscMeOQ7LWuK-nNw3lAvn0-25ye1-uvXy5OP67rIAToWhmWRIhtlLExTHsDvJVRcCO4Y4oLgMid96kF6iXnLUumEcoZnYSHGAM_IEe7XHzM9yWV2fa5hNR1bkjjUizVuqG0UUo9gyqlmZaseQblgishQSB9_xe9HpdpwD9bBpor2mDm_xReCwzjOEX1Yadww6VMqbU3U-7ddGsp2PuaLdZs_9SM9t1D4uL7FJ_kY68ITnbgR-7S7b-T7KeLzS7yN4m3r7Q</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Huang, Jian‐Feng</creator><creator>Liu, Zhi‐Qiang</creator><creator>Jin, Li‐Qun</creator><creator>Tang, Xiao‐Ling</creator><creator>Shen, Zhen‐Yang</creator><creator>Yin, Huan‐Huan</creator><creator>Zheng, Yu‐Guo</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>7QL</scope></search><sort><creationdate>201704</creationdate><title>Metabolic engineering of Escherichia coli for microbial production of L‐methionine</title><author>Huang, Jian‐Feng ; Liu, Zhi‐Qiang ; Jin, Li‐Qun ; Tang, Xiao‐Ling ; Shen, Zhen‐Yang ; Yin, Huan‐Huan ; Zheng, Yu‐Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5508-792e5cdfd6d4928b903f6d53953a273500d3abbef01b633f2e9457a98e5b0ddc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Bacteria</topic><topic>Batch Cell Culture Techniques</topic><topic>Bioengineering</topic><topic>Bioreactors</topic><topic>Bioreactors - microbiology</topic><topic>Biosynthesis</topic><topic>Biotechnology</topic><topic>Cloning, Molecular</topic><topic>competing pathway</topic><topic>Deactivation</topic><topic>Deletion</topic><topic>Disruption</topic><topic>E coli</topic><topic>Efflux</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Ethionine</topic><topic>Fermentation</topic><topic>Gene Knockout Techniques</topic><topic>import system</topic><topic>Inactivation</topic><topic>Lysine</topic><topic>Lysine - metabolism</topic><topic>L‐methionine</topic><topic>Metabolic engineering</topic><topic>Metabolic Engineering - methods</topic><topic>Metabolic Networks and Pathways</topic><topic>Methionine</topic><topic>Methionine - analysis</topic><topic>Methionine - metabolism</topic><topic>Microbiology</topic><topic>Microorganisms</topic><topic>Na2S2O3</topic><topic>Optimization</topic><topic>Pharmaceuticals</topic><topic>Plasmids - genetics</topic><topic>Sodium thiosulfate</topic><topic>Therapeutic applications</topic><topic>Threonine - metabolism</topic><topic>Transcription</topic><topic>Transporter</topic><topic>W3110</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Jian‐Feng</creatorcontrib><creatorcontrib>Liu, Zhi‐Qiang</creatorcontrib><creatorcontrib>Jin, Li‐Qun</creatorcontrib><creatorcontrib>Tang, Xiao‐Ling</creatorcontrib><creatorcontrib>Shen, Zhen‐Yang</creatorcontrib><creatorcontrib>Yin, Huan‐Huan</creatorcontrib><creatorcontrib>Zheng, Yu‐Guo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Jian‐Feng</au><au>Liu, Zhi‐Qiang</au><au>Jin, Li‐Qun</au><au>Tang, Xiao‐Ling</au><au>Shen, Zhen‐Yang</au><au>Yin, Huan‐Huan</au><au>Zheng, Yu‐Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metabolic engineering of Escherichia coli for microbial production of L‐methionine</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol Bioeng</addtitle><date>2017-04</date><risdate>2017</risdate><volume>114</volume><issue>4</issue><spage>843</spage><epage>851</epage><pages>843-851</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>ABSTRACT
L‐methionine has attracted a great deal of attention for its nutritional, pharmaceutical, and clinical applications. In this study, Escherichia coli W3110 was engineered via deletion of a negative transcriptional regulator MetJ and over‐expression of homoserine O‐succinyltransferase MetA together with efflux transporter YjeH, resulting in L‐methionine overproduction which is up to 413.16 mg/L. The partial inactivation of the L‐methionine import system MetD via disruption of metI made the engineered E. coli ΔmetJ ΔmetI/pTrcA*H more tolerant to high L‐ethionine concentration and accumulated L‐methionine to a level 43.65% higher than that of E. coli W3110 ΔmetJ/pTrcA*H. Furthermore, deletion of lysA, which blocks the lysine biosynthesis pathway, led to a further 8.5‐fold increase in L‐methionine titer of E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H. Finally, addition of Na2S2O3 to the media led to an increase of fermentation titer of 11.45%. After optimization, constructed E. coli ΔmetJ ΔmetI ΔlysA/pTrcA*H was able to produce 9.75 g/L L‐methionine with productivity of 0.20 g/L/h in a 5 L bioreactor. This novel metabolically tailored strain of E. coli provides an efficient platform for microbial production of L‐methionine. Biotechnol. Bioeng. 2017;114: 843–851. © 2016 Wiley Periodicals, Inc.
Methionine is an essential sulfur containing amino acid which is wildly used in feed stock industry and for medical purpose. The authors engineered Escherichia coli W3110 to produce L‐methionine from glucose. The main strategies include disruption of metJ, overexpression of homoserine O‐transsuccinylase (metA) together with methionine exporter (yjeH), partial disruption of methionine transporter MetD and deletion of lysA to block the competitive pathway. The fed‐batch fermentation of the final strain resulted in 9.75 g/L of L‐methionine after optimization.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>27723097</pmid><doi>10.1002/bit.26198</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2017-04, Vol.114 (4), p.843-851 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884114777 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Bacteria Batch Cell Culture Techniques Bioengineering Bioreactors Bioreactors - microbiology Biosynthesis Biotechnology Cloning, Molecular competing pathway Deactivation Deletion Disruption E coli Efflux Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Ethionine Fermentation Gene Knockout Techniques import system Inactivation Lysine Lysine - metabolism L‐methionine Metabolic engineering Metabolic Engineering - methods Metabolic Networks and Pathways Methionine Methionine - analysis Methionine - metabolism Microbiology Microorganisms Na2S2O3 Optimization Pharmaceuticals Plasmids - genetics Sodium thiosulfate Therapeutic applications Threonine - metabolism Transcription Transporter W3110 |
title | Metabolic engineering of Escherichia coli for microbial production of L‐methionine |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A43%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metabolic%20engineering%20of%20Escherichia%20coli%20for%20microbial%20production%20of%20L%E2%80%90methionine&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Huang,%20Jian%E2%80%90Feng&rft.date=2017-04&rft.volume=114&rft.issue=4&rft.spage=843&rft.epage=851&rft.pages=843-851&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.26198&rft_dat=%3Cproquest_cross%3E4315976541%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1870235331&rft_id=info:pmid/27723097&rfr_iscdi=true |