An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions

A new approach to integral-balance solutions of the diffusion equation of heat (mass) with constant transport properties by applying time-fractional semi-derivatives and semi-integrals of Riemann-Liouville sense has been developed. The time-fractional semiderivatives and semiintegrals replace the su...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Thermal science 2016-01, Vol.20 (6), p.1867-1878
1. Verfasser: Hristov, Jordan Y
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1878
container_issue 6
container_start_page 1867
container_title Thermal science
container_volume 20
creator Hristov, Jordan Y
description A new approach to integral-balance solutions of the diffusion equation of heat (mass) with constant transport properties by applying time-fractional semi-derivatives and semi-integrals of Riemann-Liouville sense has been developed. The time-fractional semiderivatives and semiintegrals replace the surface gradient (temperature) which in the classical Heat-balance integral method (HBIM) of Goodman and the Double-integration method (DIM) should be expressed through the assumed profile. The application of semiderivatives and semiintegrals reduces the approximation errors to levels less than the ones exhibited by the classical HBIM and DIM. The method is exemplified by solutions of Dirichlet and Neumann boundary condition problems.
doi_str_mv 10.2298/TSCI150917010H
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884114526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884114526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185h-b167c6e77b18e0d12beda1e5e90d313d2e38bc6a25f71d0a87951a5983df22193</originalsourceid><addsrcrecordid>eNpdkc1O3TAQha2KSr3Qbru2xAYWoR47sZ3u0BV_ElIXpevIiSfFKLGpx0HwOH3TBi4s6Gqko2_maM5h7CuIEylb--3m5_YKGtGCESAuP7CNVKquDGi1xzZCNXXVWqU_sX2iOyG0ttZs2N_TyN1UMEdXwgPyEAv-zm6qeje5OCCnNC0lpEi8JF6yixQwFu7DOC606jyN_BZd4UezIzrm_RMvYcZqzG543nMTJ5xD5TGHhxcP4i76nfjmRt_5eXhEz_u0RO_yEx9S9OHF9zP7OK4EfnmdB-zX-dnN9rK6_nFxtT29rgawzW3VgzaDRmN6sCg8yB69A2ywFV6B8hKV7QftZDMa8MJZ0zbgmjUSP0oJrTpgR7u79zn9WZBKNwcacFpjwLRQB9bWAHUj9Yoe_ofepWVNcKJO1rLVutXGrNTJjhpyIso4dvc5zOtzHYjuubHufWPqH-sFjD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429669677</pqid></control><display><type>article</type><title>An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hristov, Jordan Y</creator><creatorcontrib>Hristov, Jordan Y</creatorcontrib><description>A new approach to integral-balance solutions of the diffusion equation of heat (mass) with constant transport properties by applying time-fractional semi-derivatives and semi-integrals of Riemann-Liouville sense has been developed. The time-fractional semiderivatives and semiintegrals replace the surface gradient (temperature) which in the classical Heat-balance integral method (HBIM) of Goodman and the Double-integration method (DIM) should be expressed through the assumed profile. The application of semiderivatives and semiintegrals reduces the approximation errors to levels less than the ones exhibited by the classical HBIM and DIM. The method is exemplified by solutions of Dirichlet and Neumann boundary condition problems.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI150917010H</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Approximation ; Boundary conditions ; Constants ; Derivatives ; Diffusion ; Dirichlet problem ; Integrals ; Mathematical analysis ; Transport properties</subject><ispartof>Thermal science, 2016-01, Vol.20 (6), p.1867-1878</ispartof><rights>2016. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c185h-b167c6e77b18e0d12beda1e5e90d313d2e38bc6a25f71d0a87951a5983df22193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Hristov, Jordan Y</creatorcontrib><title>An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions</title><title>Thermal science</title><description>A new approach to integral-balance solutions of the diffusion equation of heat (mass) with constant transport properties by applying time-fractional semi-derivatives and semi-integrals of Riemann-Liouville sense has been developed. The time-fractional semiderivatives and semiintegrals replace the surface gradient (temperature) which in the classical Heat-balance integral method (HBIM) of Goodman and the Double-integration method (DIM) should be expressed through the assumed profile. The application of semiderivatives and semiintegrals reduces the approximation errors to levels less than the ones exhibited by the classical HBIM and DIM. The method is exemplified by solutions of Dirichlet and Neumann boundary condition problems.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Constants</subject><subject>Derivatives</subject><subject>Diffusion</subject><subject>Dirichlet problem</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Transport properties</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc1O3TAQha2KSr3Qbru2xAYWoR47sZ3u0BV_ElIXpevIiSfFKLGpx0HwOH3TBi4s6Gqko2_maM5h7CuIEylb--3m5_YKGtGCESAuP7CNVKquDGi1xzZCNXXVWqU_sX2iOyG0ttZs2N_TyN1UMEdXwgPyEAv-zm6qeje5OCCnNC0lpEi8JF6yixQwFu7DOC606jyN_BZd4UezIzrm_RMvYcZqzG543nMTJ5xD5TGHhxcP4i76nfjmRt_5eXhEz_u0RO_yEx9S9OHF9zP7OK4EfnmdB-zX-dnN9rK6_nFxtT29rgawzW3VgzaDRmN6sCg8yB69A2ywFV6B8hKV7QftZDMa8MJZ0zbgmjUSP0oJrTpgR7u79zn9WZBKNwcacFpjwLRQB9bWAHUj9Yoe_ofepWVNcKJO1rLVutXGrNTJjhpyIso4dvc5zOtzHYjuubHufWPqH-sFjD4</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Hristov, Jordan Y</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160101</creationdate><title>An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions</title><author>Hristov, Jordan Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185h-b167c6e77b18e0d12beda1e5e90d313d2e38bc6a25f71d0a87951a5983df22193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Constants</topic><topic>Derivatives</topic><topic>Diffusion</topic><topic>Dirichlet problem</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hristov, Jordan Y</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hristov, Jordan Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions</atitle><jtitle>Thermal science</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>20</volume><issue>6</issue><spage>1867</spage><epage>1878</epage><pages>1867-1878</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>A new approach to integral-balance solutions of the diffusion equation of heat (mass) with constant transport properties by applying time-fractional semi-derivatives and semi-integrals of Riemann-Liouville sense has been developed. The time-fractional semiderivatives and semiintegrals replace the surface gradient (temperature) which in the classical Heat-balance integral method (HBIM) of Goodman and the Double-integration method (DIM) should be expressed through the assumed profile. The application of semiderivatives and semiintegrals reduces the approximation errors to levels less than the ones exhibited by the classical HBIM and DIM. The method is exemplified by solutions of Dirichlet and Neumann boundary condition problems.</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI150917010H</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-9836
ispartof Thermal science, 2016-01, Vol.20 (6), p.1867-1878
issn 0354-9836
2334-7163
language eng
recordid cdi_proquest_miscellaneous_1884114526
source EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry
subjects Approximation
Boundary conditions
Constants
Derivatives
Diffusion
Dirichlet problem
Integrals
Mathematical analysis
Transport properties
title An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20alternative%20integral-balance%20solutions%20to%20transient%20diffusion%20of%20heat%20(mass)%20by%20time-fractional%20semi-derivatives%20and%20semi-integrals:%20Fixed%20boundary%20conditions&rft.jtitle=Thermal%20science&rft.au=Hristov,%20Jordan%20Y&rft.date=2016-01-01&rft.volume=20&rft.issue=6&rft.spage=1867&rft.epage=1878&rft.pages=1867-1878&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI150917010H&rft_dat=%3Cproquest_cross%3E1884114526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429669677&rft_id=info:pmid/&rfr_iscdi=true