An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions
A new approach to integral-balance solutions of the diffusion equation of heat (mass) with constant transport properties by applying time-fractional semi-derivatives and semi-integrals of Riemann-Liouville sense has been developed. The time-fractional semiderivatives and semiintegrals replace the su...
Gespeichert in:
Veröffentlicht in: | Thermal science 2016-01, Vol.20 (6), p.1867-1878 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1878 |
---|---|
container_issue | 6 |
container_start_page | 1867 |
container_title | Thermal science |
container_volume | 20 |
creator | Hristov, Jordan Y |
description | A new approach to integral-balance solutions of the diffusion equation of heat (mass) with constant transport properties by applying time-fractional semi-derivatives and semi-integrals of Riemann-Liouville sense has been developed. The time-fractional semiderivatives and semiintegrals replace the surface gradient (temperature) which in the classical Heat-balance integral method (HBIM) of Goodman and the Double-integration method (DIM) should be expressed through the assumed profile. The application of semiderivatives and semiintegrals reduces the approximation errors to levels less than the ones exhibited by the classical HBIM and DIM. The method is exemplified by solutions of Dirichlet and Neumann boundary condition problems. |
doi_str_mv | 10.2298/TSCI150917010H |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884114526</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884114526</sourcerecordid><originalsourceid>FETCH-LOGICAL-c185h-b167c6e77b18e0d12beda1e5e90d313d2e38bc6a25f71d0a87951a5983df22193</originalsourceid><addsrcrecordid>eNpdkc1O3TAQha2KSr3Qbru2xAYWoR47sZ3u0BV_ElIXpevIiSfFKLGpx0HwOH3TBi4s6Gqko2_maM5h7CuIEylb--3m5_YKGtGCESAuP7CNVKquDGi1xzZCNXXVWqU_sX2iOyG0ttZs2N_TyN1UMEdXwgPyEAv-zm6qeje5OCCnNC0lpEi8JF6yixQwFu7DOC606jyN_BZd4UezIzrm_RMvYcZqzG543nMTJ5xD5TGHhxcP4i76nfjmRt_5eXhEz_u0RO_yEx9S9OHF9zP7OK4EfnmdB-zX-dnN9rK6_nFxtT29rgawzW3VgzaDRmN6sCg8yB69A2ywFV6B8hKV7QftZDMa8MJZ0zbgmjUSP0oJrTpgR7u79zn9WZBKNwcacFpjwLRQB9bWAHUj9Yoe_ofepWVNcKJO1rLVutXGrNTJjhpyIso4dvc5zOtzHYjuubHufWPqH-sFjD4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2429669677</pqid></control><display><type>article</type><title>An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions</title><source>EZB-FREE-00999 freely available EZB journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Hristov, Jordan Y</creator><creatorcontrib>Hristov, Jordan Y</creatorcontrib><description>A new approach to integral-balance solutions of the diffusion equation of heat (mass) with constant transport properties by applying time-fractional semi-derivatives and semi-integrals of Riemann-Liouville sense has been developed. The time-fractional semiderivatives and semiintegrals replace the surface gradient (temperature) which in the classical Heat-balance integral method (HBIM) of Goodman and the Double-integration method (DIM) should be expressed through the assumed profile. The application of semiderivatives and semiintegrals reduces the approximation errors to levels less than the ones exhibited by the classical HBIM and DIM. The method is exemplified by solutions of Dirichlet and Neumann boundary condition problems.</description><identifier>ISSN: 0354-9836</identifier><identifier>EISSN: 2334-7163</identifier><identifier>DOI: 10.2298/TSCI150917010H</identifier><language>eng</language><publisher>Belgrade: Society of Thermal Engineers of Serbia</publisher><subject>Approximation ; Boundary conditions ; Constants ; Derivatives ; Diffusion ; Dirichlet problem ; Integrals ; Mathematical analysis ; Transport properties</subject><ispartof>Thermal science, 2016-01, Vol.20 (6), p.1867-1878</ispartof><rights>2016. This work is licensed under https://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c185h-b167c6e77b18e0d12beda1e5e90d313d2e38bc6a25f71d0a87951a5983df22193</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27902,27903,27904</link.rule.ids></links><search><creatorcontrib>Hristov, Jordan Y</creatorcontrib><title>An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions</title><title>Thermal science</title><description>A new approach to integral-balance solutions of the diffusion equation of heat (mass) with constant transport properties by applying time-fractional semi-derivatives and semi-integrals of Riemann-Liouville sense has been developed. The time-fractional semiderivatives and semiintegrals replace the surface gradient (temperature) which in the classical Heat-balance integral method (HBIM) of Goodman and the Double-integration method (DIM) should be expressed through the assumed profile. The application of semiderivatives and semiintegrals reduces the approximation errors to levels less than the ones exhibited by the classical HBIM and DIM. The method is exemplified by solutions of Dirichlet and Neumann boundary condition problems.</description><subject>Approximation</subject><subject>Boundary conditions</subject><subject>Constants</subject><subject>Derivatives</subject><subject>Diffusion</subject><subject>Dirichlet problem</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Transport properties</subject><issn>0354-9836</issn><issn>2334-7163</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkc1O3TAQha2KSr3Qbru2xAYWoR47sZ3u0BV_ElIXpevIiSfFKLGpx0HwOH3TBi4s6Gqko2_maM5h7CuIEylb--3m5_YKGtGCESAuP7CNVKquDGi1xzZCNXXVWqU_sX2iOyG0ttZs2N_TyN1UMEdXwgPyEAv-zm6qeje5OCCnNC0lpEi8JF6yixQwFu7DOC606jyN_BZd4UezIzrm_RMvYcZqzG543nMTJ5xD5TGHhxcP4i76nfjmRt_5eXhEz_u0RO_yEx9S9OHF9zP7OK4EfnmdB-zX-dnN9rK6_nFxtT29rgawzW3VgzaDRmN6sCg8yB69A2ywFV6B8hKV7QftZDMa8MJZ0zbgmjUSP0oJrTpgR7u79zn9WZBKNwcacFpjwLRQB9bWAHUj9Yoe_ofepWVNcKJO1rLVutXGrNTJjhpyIso4dvc5zOtzHYjuubHufWPqH-sFjD4</recordid><startdate>20160101</startdate><enddate>20160101</enddate><creator>Hristov, Jordan Y</creator><general>Society of Thermal Engineers of Serbia</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20160101</creationdate><title>An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions</title><author>Hristov, Jordan Y</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c185h-b167c6e77b18e0d12beda1e5e90d313d2e38bc6a25f71d0a87951a5983df22193</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Approximation</topic><topic>Boundary conditions</topic><topic>Constants</topic><topic>Derivatives</topic><topic>Diffusion</topic><topic>Dirichlet problem</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Transport properties</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hristov, Jordan Y</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Thermal science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hristov, Jordan Y</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions</atitle><jtitle>Thermal science</jtitle><date>2016-01-01</date><risdate>2016</risdate><volume>20</volume><issue>6</issue><spage>1867</spage><epage>1878</epage><pages>1867-1878</pages><issn>0354-9836</issn><eissn>2334-7163</eissn><abstract>A new approach to integral-balance solutions of the diffusion equation of heat (mass) with constant transport properties by applying time-fractional semi-derivatives and semi-integrals of Riemann-Liouville sense has been developed. The time-fractional semiderivatives and semiintegrals replace the surface gradient (temperature) which in the classical Heat-balance integral method (HBIM) of Goodman and the Double-integration method (DIM) should be expressed through the assumed profile. The application of semiderivatives and semiintegrals reduces the approximation errors to levels less than the ones exhibited by the classical HBIM and DIM. The method is exemplified by solutions of Dirichlet and Neumann boundary condition problems.</abstract><cop>Belgrade</cop><pub>Society of Thermal Engineers of Serbia</pub><doi>10.2298/TSCI150917010H</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-9836 |
ispartof | Thermal science, 2016-01, Vol.20 (6), p.1867-1878 |
issn | 0354-9836 2334-7163 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884114526 |
source | EZB-FREE-00999 freely available EZB journals; Free Full-Text Journals in Chemistry |
subjects | Approximation Boundary conditions Constants Derivatives Diffusion Dirichlet problem Integrals Mathematical analysis Transport properties |
title | An alternative integral-balance solutions to transient diffusion of heat (mass) by time-fractional semi-derivatives and semi-integrals: Fixed boundary conditions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A39%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20alternative%20integral-balance%20solutions%20to%20transient%20diffusion%20of%20heat%20(mass)%20by%20time-fractional%20semi-derivatives%20and%20semi-integrals:%20Fixed%20boundary%20conditions&rft.jtitle=Thermal%20science&rft.au=Hristov,%20Jordan%20Y&rft.date=2016-01-01&rft.volume=20&rft.issue=6&rft.spage=1867&rft.epage=1878&rft.pages=1867-1878&rft.issn=0354-9836&rft.eissn=2334-7163&rft_id=info:doi/10.2298/TSCI150917010H&rft_dat=%3Cproquest_cross%3E1884114526%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2429669677&rft_id=info:pmid/&rfr_iscdi=true |