Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magneli Ti sub(4)O sub(7) Microspheres for High-Performance Li-S Battery

Various host materials have been investigated to address the intrinsic drawbacks of lithium sulfur batteries, such as the low electronic conductivity of sulfur and inevitable decay in capacity during cycling. Besides the widely investigated carbonaceous materials, metal oxides have drawn much attent...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced energy materials 2017-02, Vol.7 (4), p.np-np
Hauptverfasser: Wei, Hao, Rodriguez, Erwin F, Best, Adam S, Hollenkamp, Anthony F, Chen, Dehong, Caruso, Rachel A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page np
container_issue 4
container_start_page np
container_title Advanced energy materials
container_volume 7
creator Wei, Hao
Rodriguez, Erwin F
Best, Adam S
Hollenkamp, Anthony F
Chen, Dehong
Caruso, Rachel A
description Various host materials have been investigated to address the intrinsic drawbacks of lithium sulfur batteries, such as the low electronic conductivity of sulfur and inevitable decay in capacity during cycling. Besides the widely investigated carbonaceous materials, metal oxides have drawn much attention because they form strong chemical bonds with the soluble lithium polysulfides. Here, mesoporous Magneli Ti sub(4)O sub(7) microspheres are prepared via an in situ carbothermal reduction that exhibit interconnected mesopores (20.4 nm), large pore volume (0.39 cm super(3) g super(-1)), and high surface area (197.2 m super(2) g super(-1)). When the sulfur cathode is embedded in a matrix of mesoporous Magneli Ti sub(4)O sub(7) microspheres, it exhibits a superior reversible capacity of 1317.6 mA h g super(-1) at moderate current (C/10) and a low decay in capacity of 12% after 400 cycles at C/5. Strong chemical bonding of the lithium polysulfides to Ti sub(4)O sub(7), as well as effective physical trapping in the mesopores and voids in the matrix are considered responsible for the improved electrochemical performance. A mechanism of the physical and chemical interactions between mesoporous Magneli Ti sub(4)O sub(7) microspheres and sulfur is proposed based on systematic investigations. Mesoporous Magneli Ti sub(4)O sub(7) microspheres are synthesized by an in situ carbothermal reduction. The microspheres have a large mesopore diameter and high surface area, allowing up to 70 wt% sulfur loading. As host material of sulfur, composite microspheres show a high discharge capacity (1320 mA h g super(-1)) and long-term cyclability (12% fading after 400 cycles).
doi_str_mv 10.1002/aenm.201601616
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884112350</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884112350</sourcerecordid><originalsourceid>FETCH-proquest_miscellaneous_18841123503</originalsourceid><addsrcrecordid>eNqVjTFPwzAUhC0EEhV0ZX5jO6TYsQlhbQXqQESlZq9M-pIYObbxi4f-Av42oULsnE76TqeTjrE7wVeC8_xeoxtWORfFZFFcsNkElRWl4pd_WebXbE70wSepJ8GlnLGvTY-DabSFtXdH4zrQ7gi7_kTnso46hJ_Wt7BPtk0RjIMKyQcffSKodOfQGqgNUHpfqOXbmY9LqEwTPYUeIxK0PsLWdH22wzjlQbsG4dVke1jrccR4umVXrbaE81_esMXLc73ZZiH6z4Q0HgZDDVqrHU6_B1GWSohcPnD5j-k3qFBcTg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1884112350</pqid></control><display><type>article</type><title>Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magneli Ti sub(4)O sub(7) Microspheres for High-Performance Li-S Battery</title><source>Access via Wiley Online Library</source><creator>Wei, Hao ; Rodriguez, Erwin F ; Best, Adam S ; Hollenkamp, Anthony F ; Chen, Dehong ; Caruso, Rachel A</creator><creatorcontrib>Wei, Hao ; Rodriguez, Erwin F ; Best, Adam S ; Hollenkamp, Anthony F ; Chen, Dehong ; Caruso, Rachel A</creatorcontrib><description>Various host materials have been investigated to address the intrinsic drawbacks of lithium sulfur batteries, such as the low electronic conductivity of sulfur and inevitable decay in capacity during cycling. Besides the widely investigated carbonaceous materials, metal oxides have drawn much attention because they form strong chemical bonds with the soluble lithium polysulfides. Here, mesoporous Magneli Ti sub(4)O sub(7) microspheres are prepared via an in situ carbothermal reduction that exhibit interconnected mesopores (20.4 nm), large pore volume (0.39 cm super(3) g super(-1)), and high surface area (197.2 m super(2) g super(-1)). When the sulfur cathode is embedded in a matrix of mesoporous Magneli Ti sub(4)O sub(7) microspheres, it exhibits a superior reversible capacity of 1317.6 mA h g super(-1) at moderate current (C/10) and a low decay in capacity of 12% after 400 cycles at C/5. Strong chemical bonding of the lithium polysulfides to Ti sub(4)O sub(7), as well as effective physical trapping in the mesopores and voids in the matrix are considered responsible for the improved electrochemical performance. A mechanism of the physical and chemical interactions between mesoporous Magneli Ti sub(4)O sub(7) microspheres and sulfur is proposed based on systematic investigations. Mesoporous Magneli Ti sub(4)O sub(7) microspheres are synthesized by an in situ carbothermal reduction. The microspheres have a large mesopore diameter and high surface area, allowing up to 70 wt% sulfur loading. As host material of sulfur, composite microspheres show a high discharge capacity (1320 mA h g super(-1)) and long-term cyclability (12% fading after 400 cycles).</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201601616</identifier><language>eng</language><subject>Chemical bonds ; Decay ; Lithium ; Lithium sulfur batteries ; Lithosphere ; Microspheres ; Polysulfides ; Sulfur ; Trapping</subject><ispartof>Advanced energy materials, 2017-02, Vol.7 (4), p.np-np</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>315,782,786,27931,27932</link.rule.ids></links><search><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Rodriguez, Erwin F</creatorcontrib><creatorcontrib>Best, Adam S</creatorcontrib><creatorcontrib>Hollenkamp, Anthony F</creatorcontrib><creatorcontrib>Chen, Dehong</creatorcontrib><creatorcontrib>Caruso, Rachel A</creatorcontrib><title>Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magneli Ti sub(4)O sub(7) Microspheres for High-Performance Li-S Battery</title><title>Advanced energy materials</title><description>Various host materials have been investigated to address the intrinsic drawbacks of lithium sulfur batteries, such as the low electronic conductivity of sulfur and inevitable decay in capacity during cycling. Besides the widely investigated carbonaceous materials, metal oxides have drawn much attention because they form strong chemical bonds with the soluble lithium polysulfides. Here, mesoporous Magneli Ti sub(4)O sub(7) microspheres are prepared via an in situ carbothermal reduction that exhibit interconnected mesopores (20.4 nm), large pore volume (0.39 cm super(3) g super(-1)), and high surface area (197.2 m super(2) g super(-1)). When the sulfur cathode is embedded in a matrix of mesoporous Magneli Ti sub(4)O sub(7) microspheres, it exhibits a superior reversible capacity of 1317.6 mA h g super(-1) at moderate current (C/10) and a low decay in capacity of 12% after 400 cycles at C/5. Strong chemical bonding of the lithium polysulfides to Ti sub(4)O sub(7), as well as effective physical trapping in the mesopores and voids in the matrix are considered responsible for the improved electrochemical performance. A mechanism of the physical and chemical interactions between mesoporous Magneli Ti sub(4)O sub(7) microspheres and sulfur is proposed based on systematic investigations. Mesoporous Magneli Ti sub(4)O sub(7) microspheres are synthesized by an in situ carbothermal reduction. The microspheres have a large mesopore diameter and high surface area, allowing up to 70 wt% sulfur loading. As host material of sulfur, composite microspheres show a high discharge capacity (1320 mA h g super(-1)) and long-term cyclability (12% fading after 400 cycles).</description><subject>Chemical bonds</subject><subject>Decay</subject><subject>Lithium</subject><subject>Lithium sulfur batteries</subject><subject>Lithosphere</subject><subject>Microspheres</subject><subject>Polysulfides</subject><subject>Sulfur</subject><subject>Trapping</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqVjTFPwzAUhC0EEhV0ZX5jO6TYsQlhbQXqQESlZq9M-pIYObbxi4f-Av42oULsnE76TqeTjrE7wVeC8_xeoxtWORfFZFFcsNkElRWl4pd_WebXbE70wSepJ8GlnLGvTY-DabSFtXdH4zrQ7gi7_kTnso46hJ_Wt7BPtk0RjIMKyQcffSKodOfQGqgNUHpfqOXbmY9LqEwTPYUeIxK0PsLWdH22wzjlQbsG4dVke1jrccR4umVXrbaE81_esMXLc73ZZiH6z4Q0HgZDDVqrHU6_B1GWSohcPnD5j-k3qFBcTg</recordid><startdate>20170201</startdate><enddate>20170201</enddate><creator>Wei, Hao</creator><creator>Rodriguez, Erwin F</creator><creator>Best, Adam S</creator><creator>Hollenkamp, Anthony F</creator><creator>Chen, Dehong</creator><creator>Caruso, Rachel A</creator><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20170201</creationdate><title>Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magneli Ti sub(4)O sub(7) Microspheres for High-Performance Li-S Battery</title><author>Wei, Hao ; Rodriguez, Erwin F ; Best, Adam S ; Hollenkamp, Anthony F ; Chen, Dehong ; Caruso, Rachel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_miscellaneous_18841123503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Chemical bonds</topic><topic>Decay</topic><topic>Lithium</topic><topic>Lithium sulfur batteries</topic><topic>Lithosphere</topic><topic>Microspheres</topic><topic>Polysulfides</topic><topic>Sulfur</topic><topic>Trapping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Hao</creatorcontrib><creatorcontrib>Rodriguez, Erwin F</creatorcontrib><creatorcontrib>Best, Adam S</creatorcontrib><creatorcontrib>Hollenkamp, Anthony F</creatorcontrib><creatorcontrib>Chen, Dehong</creatorcontrib><creatorcontrib>Caruso, Rachel A</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Hao</au><au>Rodriguez, Erwin F</au><au>Best, Adam S</au><au>Hollenkamp, Anthony F</au><au>Chen, Dehong</au><au>Caruso, Rachel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magneli Ti sub(4)O sub(7) Microspheres for High-Performance Li-S Battery</atitle><jtitle>Advanced energy materials</jtitle><date>2017-02-01</date><risdate>2017</risdate><volume>7</volume><issue>4</issue><spage>np</spage><epage>np</epage><pages>np-np</pages><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>Various host materials have been investigated to address the intrinsic drawbacks of lithium sulfur batteries, such as the low electronic conductivity of sulfur and inevitable decay in capacity during cycling. Besides the widely investigated carbonaceous materials, metal oxides have drawn much attention because they form strong chemical bonds with the soluble lithium polysulfides. Here, mesoporous Magneli Ti sub(4)O sub(7) microspheres are prepared via an in situ carbothermal reduction that exhibit interconnected mesopores (20.4 nm), large pore volume (0.39 cm super(3) g super(-1)), and high surface area (197.2 m super(2) g super(-1)). When the sulfur cathode is embedded in a matrix of mesoporous Magneli Ti sub(4)O sub(7) microspheres, it exhibits a superior reversible capacity of 1317.6 mA h g super(-1) at moderate current (C/10) and a low decay in capacity of 12% after 400 cycles at C/5. Strong chemical bonding of the lithium polysulfides to Ti sub(4)O sub(7), as well as effective physical trapping in the mesopores and voids in the matrix are considered responsible for the improved electrochemical performance. A mechanism of the physical and chemical interactions between mesoporous Magneli Ti sub(4)O sub(7) microspheres and sulfur is proposed based on systematic investigations. Mesoporous Magneli Ti sub(4)O sub(7) microspheres are synthesized by an in situ carbothermal reduction. The microspheres have a large mesopore diameter and high surface area, allowing up to 70 wt% sulfur loading. As host material of sulfur, composite microspheres show a high discharge capacity (1320 mA h g super(-1)) and long-term cyclability (12% fading after 400 cycles).</abstract><doi>10.1002/aenm.201601616</doi></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2017-02, Vol.7 (4), p.np-np
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_miscellaneous_1884112350
source Access via Wiley Online Library
subjects Chemical bonds
Decay
Lithium
Lithium sulfur batteries
Lithosphere
Microspheres
Polysulfides
Sulfur
Trapping
title Chemical Bonding and Physical Trapping of Sulfur in Mesoporous Magneli Ti sub(4)O sub(7) Microspheres for High-Performance Li-S Battery
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T12%3A37%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20Bonding%20and%20Physical%20Trapping%20of%20Sulfur%20in%20Mesoporous%20Magneli%20Ti%20sub(4)O%20sub(7)%20Microspheres%20for%20High-Performance%20Li-S%20Battery&rft.jtitle=Advanced%20energy%20materials&rft.au=Wei,%20Hao&rft.date=2017-02-01&rft.volume=7&rft.issue=4&rft.spage=np&rft.epage=np&rft.pages=np-np&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201601616&rft_dat=%3Cproquest%3E1884112350%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1884112350&rft_id=info:pmid/&rfr_iscdi=true