Fluorescent Nanowire Ring Illumination for Wide-Field Far-Field Subdiffraction Imaging
Here we demonstrate an active method which pioneers in utilizing a combination of a spatial frequency shift and a Stokes frequency shift to enable wide-field far-field subdiffraction imaging. A fluorescent nanowire ring acts as a localized source and is combined with a film waveguide to produce omni...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2017-02, Vol.118 (7), p.076101-076101, Article 076101 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here we demonstrate an active method which pioneers in utilizing a combination of a spatial frequency shift and a Stokes frequency shift to enable wide-field far-field subdiffraction imaging. A fluorescent nanowire ring acts as a localized source and is combined with a film waveguide to produce omnidirectional illuminating evanescent waves. Benefitting from the high wave vector of illumination, the high spatial frequencies of an object can be shifted to the passband of a conventional imaging system, contributing subwavelength spatial information to the far-field image. A structure featuring 70-nm-wide slots spaced 70 nm apart has been resolved at a wavelength of 520 nm with a 0.85 numerical aperture standard objective based on this method. The versatility of this approach has been demonstrated by imaging integrated chips, Blu-ray DVDs, biological cells, and various subwavelength 2D patterns, with a viewing area of up to 1000 μm^{2}, which is one order of magnitude larger than the previous far-field and full-field nanoscopy methods. This new resolving technique is label-free, is conveniently integrated with conventional microscopes, and can potentially become an important tool in cellular biology, the on-chip industry, as well as other fields requiring wide-field nanoscale visualization. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/physrevlett.118.076101 |