Resource requests prediction in the cloud computing environment with a deep belief network

Summary Accurate resource requests prediction is essential to achieve optimal job scheduling and load balancing for cloud Computing. Existing prediction approaches fall short in providing satisfactory accuracy because of high variances of cloud metrics. We propose a deep belief network (DBN)‐based a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Software, practice & experience practice & experience, 2017-03, Vol.47 (3), p.473-488
Hauptverfasser: Zhang, Weishan, Duan, Pengcheng, Yang, Laurence T, Xia, Feng, Li, Zhongwei, Lu, Qinghua, Gong, Wenjuan, Yang, Su
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 488
container_issue 3
container_start_page 473
container_title Software, practice & experience
container_volume 47
creator Zhang, Weishan
Duan, Pengcheng
Yang, Laurence T
Xia, Feng
Li, Zhongwei
Lu, Qinghua
Gong, Wenjuan
Yang, Su
description Summary Accurate resource requests prediction is essential to achieve optimal job scheduling and load balancing for cloud Computing. Existing prediction approaches fall short in providing satisfactory accuracy because of high variances of cloud metrics. We propose a deep belief network (DBN)‐based approach to predict cloud resource requests. We design a set of experiments to find the most influential factors for prediction accuracy and the best DBN parameter set to achieve optimal performance. The innovative points of the proposed approach is that it introduces analysis of variance and orthogonal experimental design techniques into the parameter learning of DBN. The proposed approach achieves high accuracy with mean square error of [10−6,10−5], approximately 72% reduction compared with the traditional autoregressive integrated moving average predictor, and has better prediction accuracy compared with the state‐of‐art fractal modeling approach. Copyright © 2016 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/spe.2426
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884111356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884111356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3966-bf87f95fb76f77fe8b326c38e86465725fc5095598e780f03eade306a7a5d6613</originalsourceid><addsrcrecordid>eNp10FtLwzAYBuAgCs4p-BMC3njTmTTNoZcy5gEGigcQb0qbfnGZXVKT1rF_b-cEQfDqu3l4-d4XoVNKJpSQ9CK2MEmzVOyhESW5TEiaveyjESFMJURk2SE6inFJCKU8FSP0-gDR90EDDvDRQ-wibgPUVnfWO2wd7haAdeP7Gmu_avvOujcM7tMG71bgOry23QKXuAZocQWNBYMddGsf3o_RgSmbCCc_d4yer2ZP05tkfnd9O72cJ5rlQiSVUdLk3FRSGCkNqIqlQjMFSmSCy5QbzUnOea5AKmIIg7IGRkQpS14LQdkYne9y2-C_KxQrGzU0TenA97GgSmWUUsbFQM_-0OVQ3g3fDUpwmpNhp99AHXyMAUzRBrsqw6agpNiOXAwjF9uRB5rs6No2sPnXFY_3s2__BfCHfaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865190003</pqid></control><display><type>article</type><title>Resource requests prediction in the cloud computing environment with a deep belief network</title><source>Wiley Online Library All Journals</source><creator>Zhang, Weishan ; Duan, Pengcheng ; Yang, Laurence T ; Xia, Feng ; Li, Zhongwei ; Lu, Qinghua ; Gong, Wenjuan ; Yang, Su</creator><creatorcontrib>Zhang, Weishan ; Duan, Pengcheng ; Yang, Laurence T ; Xia, Feng ; Li, Zhongwei ; Lu, Qinghua ; Gong, Wenjuan ; Yang, Su</creatorcontrib><description>Summary Accurate resource requests prediction is essential to achieve optimal job scheduling and load balancing for cloud Computing. Existing prediction approaches fall short in providing satisfactory accuracy because of high variances of cloud metrics. We propose a deep belief network (DBN)‐based approach to predict cloud resource requests. We design a set of experiments to find the most influential factors for prediction accuracy and the best DBN parameter set to achieve optimal performance. The innovative points of the proposed approach is that it introduces analysis of variance and orthogonal experimental design techniques into the parameter learning of DBN. The proposed approach achieves high accuracy with mean square error of [10−6,10−5], approximately 72% reduction compared with the traditional autoregressive integrated moving average predictor, and has better prediction accuracy compared with the state‐of‐art fractal modeling approach. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.2426</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Belief networks ; Cloud computing ; deep belief network ; Design analysis ; Design parameters ; Mathematical models ; Optimization ; Parameters ; prediction ; resource request</subject><ispartof>Software, practice &amp; experience, 2017-03, Vol.47 (3), p.473-488</ispartof><rights>Copyright © 2016 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3966-bf87f95fb76f77fe8b326c38e86465725fc5095598e780f03eade306a7a5d6613</citedby><cites>FETCH-LOGICAL-c3966-bf87f95fb76f77fe8b326c38e86465725fc5095598e780f03eade306a7a5d6613</cites><orcidid>0000-0001-9800-1068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspe.2426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspe.2426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Zhang, Weishan</creatorcontrib><creatorcontrib>Duan, Pengcheng</creatorcontrib><creatorcontrib>Yang, Laurence T</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><creatorcontrib>Li, Zhongwei</creatorcontrib><creatorcontrib>Lu, Qinghua</creatorcontrib><creatorcontrib>Gong, Wenjuan</creatorcontrib><creatorcontrib>Yang, Su</creatorcontrib><title>Resource requests prediction in the cloud computing environment with a deep belief network</title><title>Software, practice &amp; experience</title><description>Summary Accurate resource requests prediction is essential to achieve optimal job scheduling and load balancing for cloud Computing. Existing prediction approaches fall short in providing satisfactory accuracy because of high variances of cloud metrics. We propose a deep belief network (DBN)‐based approach to predict cloud resource requests. We design a set of experiments to find the most influential factors for prediction accuracy and the best DBN parameter set to achieve optimal performance. The innovative points of the proposed approach is that it introduces analysis of variance and orthogonal experimental design techniques into the parameter learning of DBN. The proposed approach achieves high accuracy with mean square error of [10−6,10−5], approximately 72% reduction compared with the traditional autoregressive integrated moving average predictor, and has better prediction accuracy compared with the state‐of‐art fractal modeling approach. Copyright © 2016 John Wiley &amp; Sons, Ltd.</description><subject>Accuracy</subject><subject>Belief networks</subject><subject>Cloud computing</subject><subject>deep belief network</subject><subject>Design analysis</subject><subject>Design parameters</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameters</subject><subject>prediction</subject><subject>resource request</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10FtLwzAYBuAgCs4p-BMC3njTmTTNoZcy5gEGigcQb0qbfnGZXVKT1rF_b-cEQfDqu3l4-d4XoVNKJpSQ9CK2MEmzVOyhESW5TEiaveyjESFMJURk2SE6inFJCKU8FSP0-gDR90EDDvDRQ-wibgPUVnfWO2wd7haAdeP7Gmu_avvOujcM7tMG71bgOry23QKXuAZocQWNBYMddGsf3o_RgSmbCCc_d4yer2ZP05tkfnd9O72cJ5rlQiSVUdLk3FRSGCkNqIqlQjMFSmSCy5QbzUnOea5AKmIIg7IGRkQpS14LQdkYne9y2-C_KxQrGzU0TenA97GgSmWUUsbFQM_-0OVQ3g3fDUpwmpNhp99AHXyMAUzRBrsqw6agpNiOXAwjF9uRB5rs6No2sPnXFY_3s2__BfCHfaE</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Zhang, Weishan</creator><creator>Duan, Pengcheng</creator><creator>Yang, Laurence T</creator><creator>Xia, Feng</creator><creator>Li, Zhongwei</creator><creator>Lu, Qinghua</creator><creator>Gong, Wenjuan</creator><creator>Yang, Su</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9800-1068</orcidid></search><sort><creationdate>201703</creationdate><title>Resource requests prediction in the cloud computing environment with a deep belief network</title><author>Zhang, Weishan ; Duan, Pengcheng ; Yang, Laurence T ; Xia, Feng ; Li, Zhongwei ; Lu, Qinghua ; Gong, Wenjuan ; Yang, Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3966-bf87f95fb76f77fe8b326c38e86465725fc5095598e780f03eade306a7a5d6613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Belief networks</topic><topic>Cloud computing</topic><topic>deep belief network</topic><topic>Design analysis</topic><topic>Design parameters</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameters</topic><topic>prediction</topic><topic>resource request</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weishan</creatorcontrib><creatorcontrib>Duan, Pengcheng</creatorcontrib><creatorcontrib>Yang, Laurence T</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><creatorcontrib>Li, Zhongwei</creatorcontrib><creatorcontrib>Lu, Qinghua</creatorcontrib><creatorcontrib>Gong, Wenjuan</creatorcontrib><creatorcontrib>Yang, Su</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Software, practice &amp; experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weishan</au><au>Duan, Pengcheng</au><au>Yang, Laurence T</au><au>Xia, Feng</au><au>Li, Zhongwei</au><au>Lu, Qinghua</au><au>Gong, Wenjuan</au><au>Yang, Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource requests prediction in the cloud computing environment with a deep belief network</atitle><jtitle>Software, practice &amp; experience</jtitle><date>2017-03</date><risdate>2017</risdate><volume>47</volume><issue>3</issue><spage>473</spage><epage>488</epage><pages>473-488</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>Summary Accurate resource requests prediction is essential to achieve optimal job scheduling and load balancing for cloud Computing. Existing prediction approaches fall short in providing satisfactory accuracy because of high variances of cloud metrics. We propose a deep belief network (DBN)‐based approach to predict cloud resource requests. We design a set of experiments to find the most influential factors for prediction accuracy and the best DBN parameter set to achieve optimal performance. The innovative points of the proposed approach is that it introduces analysis of variance and orthogonal experimental design techniques into the parameter learning of DBN. The proposed approach achieves high accuracy with mean square error of [10−6,10−5], approximately 72% reduction compared with the traditional autoregressive integrated moving average predictor, and has better prediction accuracy compared with the state‐of‐art fractal modeling approach. Copyright © 2016 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/spe.2426</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9800-1068</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0038-0644
ispartof Software, practice & experience, 2017-03, Vol.47 (3), p.473-488
issn 0038-0644
1097-024X
language eng
recordid cdi_proquest_miscellaneous_1884111356
source Wiley Online Library All Journals
subjects Accuracy
Belief networks
Cloud computing
deep belief network
Design analysis
Design parameters
Mathematical models
Optimization
Parameters
prediction
resource request
title Resource requests prediction in the cloud computing environment with a deep belief network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource%20requests%20prediction%20in%20the%20cloud%20computing%20environment%20with%20a%20deep%20belief%20network&rft.jtitle=Software,%20practice%20&%20experience&rft.au=Zhang,%20Weishan&rft.date=2017-03&rft.volume=47&rft.issue=3&rft.spage=473&rft.epage=488&rft.pages=473-488&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.2426&rft_dat=%3Cproquest_cross%3E1884111356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865190003&rft_id=info:pmid/&rfr_iscdi=true