Resource requests prediction in the cloud computing environment with a deep belief network
Summary Accurate resource requests prediction is essential to achieve optimal job scheduling and load balancing for cloud Computing. Existing prediction approaches fall short in providing satisfactory accuracy because of high variances of cloud metrics. We propose a deep belief network (DBN)‐based a...
Gespeichert in:
Veröffentlicht in: | Software, practice & experience practice & experience, 2017-03, Vol.47 (3), p.473-488 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 488 |
---|---|
container_issue | 3 |
container_start_page | 473 |
container_title | Software, practice & experience |
container_volume | 47 |
creator | Zhang, Weishan Duan, Pengcheng Yang, Laurence T Xia, Feng Li, Zhongwei Lu, Qinghua Gong, Wenjuan Yang, Su |
description | Summary
Accurate resource requests prediction is essential to achieve optimal job scheduling and load balancing for cloud Computing. Existing prediction approaches fall short in providing satisfactory accuracy because of high variances of cloud metrics. We propose a deep belief network (DBN)‐based approach to predict cloud resource requests. We design a set of experiments to find the most influential factors for prediction accuracy and the best DBN parameter set to achieve optimal performance. The innovative points of the proposed approach is that it introduces analysis of variance and orthogonal experimental design techniques into the parameter learning of DBN. The proposed approach achieves high accuracy with mean square error of [10−6,10−5], approximately 72% reduction compared with the traditional autoregressive integrated moving average predictor, and has better prediction accuracy compared with the state‐of‐art fractal modeling approach. Copyright © 2016 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/spe.2426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884111356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1884111356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3966-bf87f95fb76f77fe8b326c38e86465725fc5095598e780f03eade306a7a5d6613</originalsourceid><addsrcrecordid>eNp10FtLwzAYBuAgCs4p-BMC3njTmTTNoZcy5gEGigcQb0qbfnGZXVKT1rF_b-cEQfDqu3l4-d4XoVNKJpSQ9CK2MEmzVOyhESW5TEiaveyjESFMJURk2SE6inFJCKU8FSP0-gDR90EDDvDRQ-wibgPUVnfWO2wd7haAdeP7Gmu_avvOujcM7tMG71bgOry23QKXuAZocQWNBYMddGsf3o_RgSmbCCc_d4yer2ZP05tkfnd9O72cJ5rlQiSVUdLk3FRSGCkNqIqlQjMFSmSCy5QbzUnOea5AKmIIg7IGRkQpS14LQdkYne9y2-C_KxQrGzU0TenA97GgSmWUUsbFQM_-0OVQ3g3fDUpwmpNhp99AHXyMAUzRBrsqw6agpNiOXAwjF9uRB5rs6No2sPnXFY_3s2__BfCHfaE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1865190003</pqid></control><display><type>article</type><title>Resource requests prediction in the cloud computing environment with a deep belief network</title><source>Wiley Online Library All Journals</source><creator>Zhang, Weishan ; Duan, Pengcheng ; Yang, Laurence T ; Xia, Feng ; Li, Zhongwei ; Lu, Qinghua ; Gong, Wenjuan ; Yang, Su</creator><creatorcontrib>Zhang, Weishan ; Duan, Pengcheng ; Yang, Laurence T ; Xia, Feng ; Li, Zhongwei ; Lu, Qinghua ; Gong, Wenjuan ; Yang, Su</creatorcontrib><description>Summary
Accurate resource requests prediction is essential to achieve optimal job scheduling and load balancing for cloud Computing. Existing prediction approaches fall short in providing satisfactory accuracy because of high variances of cloud metrics. We propose a deep belief network (DBN)‐based approach to predict cloud resource requests. We design a set of experiments to find the most influential factors for prediction accuracy and the best DBN parameter set to achieve optimal performance. The innovative points of the proposed approach is that it introduces analysis of variance and orthogonal experimental design techniques into the parameter learning of DBN. The proposed approach achieves high accuracy with mean square error of [10−6,10−5], approximately 72% reduction compared with the traditional autoregressive integrated moving average predictor, and has better prediction accuracy compared with the state‐of‐art fractal modeling approach. Copyright © 2016 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0038-0644</identifier><identifier>EISSN: 1097-024X</identifier><identifier>DOI: 10.1002/spe.2426</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Accuracy ; Belief networks ; Cloud computing ; deep belief network ; Design analysis ; Design parameters ; Mathematical models ; Optimization ; Parameters ; prediction ; resource request</subject><ispartof>Software, practice & experience, 2017-03, Vol.47 (3), p.473-488</ispartof><rights>Copyright © 2016 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2017 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3966-bf87f95fb76f77fe8b326c38e86465725fc5095598e780f03eade306a7a5d6613</citedby><cites>FETCH-LOGICAL-c3966-bf87f95fb76f77fe8b326c38e86465725fc5095598e780f03eade306a7a5d6613</cites><orcidid>0000-0001-9800-1068</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fspe.2426$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fspe.2426$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>315,781,785,1418,27926,27927,45576,45577</link.rule.ids></links><search><creatorcontrib>Zhang, Weishan</creatorcontrib><creatorcontrib>Duan, Pengcheng</creatorcontrib><creatorcontrib>Yang, Laurence T</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><creatorcontrib>Li, Zhongwei</creatorcontrib><creatorcontrib>Lu, Qinghua</creatorcontrib><creatorcontrib>Gong, Wenjuan</creatorcontrib><creatorcontrib>Yang, Su</creatorcontrib><title>Resource requests prediction in the cloud computing environment with a deep belief network</title><title>Software, practice & experience</title><description>Summary
Accurate resource requests prediction is essential to achieve optimal job scheduling and load balancing for cloud Computing. Existing prediction approaches fall short in providing satisfactory accuracy because of high variances of cloud metrics. We propose a deep belief network (DBN)‐based approach to predict cloud resource requests. We design a set of experiments to find the most influential factors for prediction accuracy and the best DBN parameter set to achieve optimal performance. The innovative points of the proposed approach is that it introduces analysis of variance and orthogonal experimental design techniques into the parameter learning of DBN. The proposed approach achieves high accuracy with mean square error of [10−6,10−5], approximately 72% reduction compared with the traditional autoregressive integrated moving average predictor, and has better prediction accuracy compared with the state‐of‐art fractal modeling approach. Copyright © 2016 John Wiley & Sons, Ltd.</description><subject>Accuracy</subject><subject>Belief networks</subject><subject>Cloud computing</subject><subject>deep belief network</subject><subject>Design analysis</subject><subject>Design parameters</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Parameters</subject><subject>prediction</subject><subject>resource request</subject><issn>0038-0644</issn><issn>1097-024X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10FtLwzAYBuAgCs4p-BMC3njTmTTNoZcy5gEGigcQb0qbfnGZXVKT1rF_b-cEQfDqu3l4-d4XoVNKJpSQ9CK2MEmzVOyhESW5TEiaveyjESFMJURk2SE6inFJCKU8FSP0-gDR90EDDvDRQ-wibgPUVnfWO2wd7haAdeP7Gmu_avvOujcM7tMG71bgOry23QKXuAZocQWNBYMddGsf3o_RgSmbCCc_d4yer2ZP05tkfnd9O72cJ5rlQiSVUdLk3FRSGCkNqIqlQjMFSmSCy5QbzUnOea5AKmIIg7IGRkQpS14LQdkYne9y2-C_KxQrGzU0TenA97GgSmWUUsbFQM_-0OVQ3g3fDUpwmpNhp99AHXyMAUzRBrsqw6agpNiOXAwjF9uRB5rs6No2sPnXFY_3s2__BfCHfaE</recordid><startdate>201703</startdate><enddate>201703</enddate><creator>Zhang, Weishan</creator><creator>Duan, Pengcheng</creator><creator>Yang, Laurence T</creator><creator>Xia, Feng</creator><creator>Li, Zhongwei</creator><creator>Lu, Qinghua</creator><creator>Gong, Wenjuan</creator><creator>Yang, Su</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-9800-1068</orcidid></search><sort><creationdate>201703</creationdate><title>Resource requests prediction in the cloud computing environment with a deep belief network</title><author>Zhang, Weishan ; Duan, Pengcheng ; Yang, Laurence T ; Xia, Feng ; Li, Zhongwei ; Lu, Qinghua ; Gong, Wenjuan ; Yang, Su</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3966-bf87f95fb76f77fe8b326c38e86465725fc5095598e780f03eade306a7a5d6613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accuracy</topic><topic>Belief networks</topic><topic>Cloud computing</topic><topic>deep belief network</topic><topic>Design analysis</topic><topic>Design parameters</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Parameters</topic><topic>prediction</topic><topic>resource request</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weishan</creatorcontrib><creatorcontrib>Duan, Pengcheng</creatorcontrib><creatorcontrib>Yang, Laurence T</creatorcontrib><creatorcontrib>Xia, Feng</creatorcontrib><creatorcontrib>Li, Zhongwei</creatorcontrib><creatorcontrib>Lu, Qinghua</creatorcontrib><creatorcontrib>Gong, Wenjuan</creatorcontrib><creatorcontrib>Yang, Su</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Software, practice & experience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weishan</au><au>Duan, Pengcheng</au><au>Yang, Laurence T</au><au>Xia, Feng</au><au>Li, Zhongwei</au><au>Lu, Qinghua</au><au>Gong, Wenjuan</au><au>Yang, Su</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Resource requests prediction in the cloud computing environment with a deep belief network</atitle><jtitle>Software, practice & experience</jtitle><date>2017-03</date><risdate>2017</risdate><volume>47</volume><issue>3</issue><spage>473</spage><epage>488</epage><pages>473-488</pages><issn>0038-0644</issn><eissn>1097-024X</eissn><abstract>Summary
Accurate resource requests prediction is essential to achieve optimal job scheduling and load balancing for cloud Computing. Existing prediction approaches fall short in providing satisfactory accuracy because of high variances of cloud metrics. We propose a deep belief network (DBN)‐based approach to predict cloud resource requests. We design a set of experiments to find the most influential factors for prediction accuracy and the best DBN parameter set to achieve optimal performance. The innovative points of the proposed approach is that it introduces analysis of variance and orthogonal experimental design techniques into the parameter learning of DBN. The proposed approach achieves high accuracy with mean square error of [10−6,10−5], approximately 72% reduction compared with the traditional autoregressive integrated moving average predictor, and has better prediction accuracy compared with the state‐of‐art fractal modeling approach. Copyright © 2016 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/spe.2426</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9800-1068</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-0644 |
ispartof | Software, practice & experience, 2017-03, Vol.47 (3), p.473-488 |
issn | 0038-0644 1097-024X |
language | eng |
recordid | cdi_proquest_miscellaneous_1884111356 |
source | Wiley Online Library All Journals |
subjects | Accuracy Belief networks Cloud computing deep belief network Design analysis Design parameters Mathematical models Optimization Parameters prediction resource request |
title | Resource requests prediction in the cloud computing environment with a deep belief network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T08%3A12%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Resource%20requests%20prediction%20in%20the%20cloud%20computing%20environment%20with%20a%20deep%20belief%20network&rft.jtitle=Software,%20practice%20&%20experience&rft.au=Zhang,%20Weishan&rft.date=2017-03&rft.volume=47&rft.issue=3&rft.spage=473&rft.epage=488&rft.pages=473-488&rft.issn=0038-0644&rft.eissn=1097-024X&rft_id=info:doi/10.1002/spe.2426&rft_dat=%3Cproquest_cross%3E1884111356%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1865190003&rft_id=info:pmid/&rfr_iscdi=true |