On the covering of a Hill’s region by solutions in the restricted three-body problem
We consider two classical celestial-mechanical systems: the planar restricted circular three-body problem and its simplification, the Hill’s problem. Numerical and analytical analyses of the covering of a Hill’s region by solutions starting with zero velocity at its boundary are presented. We show t...
Gespeichert in:
Veröffentlicht in: | Celestial mechanics and dynamical astronomy 2017-03, Vol.127 (3), p.331-341 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 341 |
---|---|
container_issue | 3 |
container_start_page | 331 |
container_title | Celestial mechanics and dynamical astronomy |
container_volume | 127 |
creator | Kozlov, Valery Polekhin, Ivan |
description | We consider two classical celestial-mechanical systems: the planar restricted circular three-body problem and its simplification, the Hill’s problem. Numerical and analytical analyses of the covering of a Hill’s region by solutions starting with zero velocity at its boundary are presented. We show that, in all considered cases, there always exists an area inside a Hill’s region that is uncovered by the solutions. |
doi_str_mv | 10.1007/s10569-016-9729-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1884110552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>4313251441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-c27b7be35af926a77af02652b2d98773cb71a8db43ce288fd36984a2d65157303</originalsourceid><addsrcrecordid>eNqNkctKAzEYhYMoWKsP4C7gxk00l8ltKUWtUOhG3YZkJlOnTCc1mRG68zV8PZ_ElHEhguAqf-A7578cAM4JviIYy-tEMBcaYSKQllQjfgAmhEuKdCHVIZhgTRmimqtjcJLSGmPMseYT8LzsYP_iYRnefGy6FQw1tHDetO3n-0eC0a-a0EG3gym0Q5_rBJtREX3qY1P2vsrf6D1yodrBbQyu9ZtTcFTbNvmz73cKnu5uH2dztFjeP8xuFqhkivaopNJJ5xm3tabCSmlrTAWnjlZaSclKJ4lVlStY6alSdcWEVoWlleB5OYbZFFyOvrnv65AnMpsmlb5tbefDkAxRqiD5NJz-A5VSMcX43vXiF7oOQ-zyIpkSkgtSKJIpMlJlDClFX5ttbDY27gzBZh-KGUMxORSzD8XwrKGjJm331_bxh_Ofoi_vII54</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1867561481</pqid></control><display><type>article</type><title>On the covering of a Hill’s region by solutions in the restricted three-body problem</title><source>SpringerNature Journals</source><creator>Kozlov, Valery ; Polekhin, Ivan</creator><creatorcontrib>Kozlov, Valery ; Polekhin, Ivan</creatorcontrib><description>We consider two classical celestial-mechanical systems: the planar restricted circular three-body problem and its simplification, the Hill’s problem. Numerical and analytical analyses of the covering of a Hill’s region by solutions starting with zero velocity at its boundary are presented. We show that, in all considered cases, there always exists an area inside a Hill’s region that is uncovered by the solutions.</description><identifier>ISSN: 0923-2958</identifier><identifier>EISSN: 1572-9478</identifier><identifier>DOI: 10.1007/s10569-016-9729-5</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Aerospace Technology and Astronautics ; Astronomy ; Astrophysics ; Astrophysics and Astroparticles ; Boundaries ; Celestial mechanics ; Circularity ; Classical Mechanics ; Dynamical systems ; Dynamical Systems and Ergodic Theory ; Geophysics/Geodesy ; Mathematical analysis ; Mathematical models ; Numerical analysis ; Orbits ; Original Article ; Physics ; Physics and Astronomy ; Simplification</subject><ispartof>Celestial mechanics and dynamical astronomy, 2017-03, Vol.127 (3), p.331-341</ispartof><rights>Springer Science+Business Media Dordrecht 2016</rights><rights>Celestial Mechanics and Dynamical Astronomy is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-c27b7be35af926a77af02652b2d98773cb71a8db43ce288fd36984a2d65157303</citedby><cites>FETCH-LOGICAL-c382t-c27b7be35af926a77af02652b2d98773cb71a8db43ce288fd36984a2d65157303</cites><orcidid>0000-0002-6312-6511</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10569-016-9729-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10569-016-9729-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Kozlov, Valery</creatorcontrib><creatorcontrib>Polekhin, Ivan</creatorcontrib><title>On the covering of a Hill’s region by solutions in the restricted three-body problem</title><title>Celestial mechanics and dynamical astronomy</title><addtitle>Celest Mech Dyn Astr</addtitle><description>We consider two classical celestial-mechanical systems: the planar restricted circular three-body problem and its simplification, the Hill’s problem. Numerical and analytical analyses of the covering of a Hill’s region by solutions starting with zero velocity at its boundary are presented. We show that, in all considered cases, there always exists an area inside a Hill’s region that is uncovered by the solutions.</description><subject>Aerospace Technology and Astronautics</subject><subject>Astronomy</subject><subject>Astrophysics</subject><subject>Astrophysics and Astroparticles</subject><subject>Boundaries</subject><subject>Celestial mechanics</subject><subject>Circularity</subject><subject>Classical Mechanics</subject><subject>Dynamical systems</subject><subject>Dynamical Systems and Ergodic Theory</subject><subject>Geophysics/Geodesy</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Orbits</subject><subject>Original Article</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Simplification</subject><issn>0923-2958</issn><issn>1572-9478</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkctKAzEYhYMoWKsP4C7gxk00l8ltKUWtUOhG3YZkJlOnTCc1mRG68zV8PZ_ElHEhguAqf-A7578cAM4JviIYy-tEMBcaYSKQllQjfgAmhEuKdCHVIZhgTRmimqtjcJLSGmPMseYT8LzsYP_iYRnefGy6FQw1tHDetO3n-0eC0a-a0EG3gym0Q5_rBJtREX3qY1P2vsrf6D1yodrBbQyu9ZtTcFTbNvmz73cKnu5uH2dztFjeP8xuFqhkivaopNJJ5xm3tabCSmlrTAWnjlZaSclKJ4lVlStY6alSdcWEVoWlleB5OYbZFFyOvrnv65AnMpsmlb5tbefDkAxRqiD5NJz-A5VSMcX43vXiF7oOQ-zyIpkSkgtSKJIpMlJlDClFX5ttbDY27gzBZh-KGUMxORSzD8XwrKGjJm331_bxh_Ofoi_vII54</recordid><startdate>20170301</startdate><enddate>20170301</enddate><creator>Kozlov, Valery</creator><creator>Polekhin, Ivan</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-6312-6511</orcidid></search><sort><creationdate>20170301</creationdate><title>On the covering of a Hill’s region by solutions in the restricted three-body problem</title><author>Kozlov, Valery ; Polekhin, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-c27b7be35af926a77af02652b2d98773cb71a8db43ce288fd36984a2d65157303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aerospace Technology and Astronautics</topic><topic>Astronomy</topic><topic>Astrophysics</topic><topic>Astrophysics and Astroparticles</topic><topic>Boundaries</topic><topic>Celestial mechanics</topic><topic>Circularity</topic><topic>Classical Mechanics</topic><topic>Dynamical systems</topic><topic>Dynamical Systems and Ergodic Theory</topic><topic>Geophysics/Geodesy</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Orbits</topic><topic>Original Article</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Simplification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kozlov, Valery</creatorcontrib><creatorcontrib>Polekhin, Ivan</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Celestial mechanics and dynamical astronomy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kozlov, Valery</au><au>Polekhin, Ivan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the covering of a Hill’s region by solutions in the restricted three-body problem</atitle><jtitle>Celestial mechanics and dynamical astronomy</jtitle><stitle>Celest Mech Dyn Astr</stitle><date>2017-03-01</date><risdate>2017</risdate><volume>127</volume><issue>3</issue><spage>331</spage><epage>341</epage><pages>331-341</pages><issn>0923-2958</issn><eissn>1572-9478</eissn><abstract>We consider two classical celestial-mechanical systems: the planar restricted circular three-body problem and its simplification, the Hill’s problem. Numerical and analytical analyses of the covering of a Hill’s region by solutions starting with zero velocity at its boundary are presented. We show that, in all considered cases, there always exists an area inside a Hill’s region that is uncovered by the solutions.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s10569-016-9729-5</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6312-6511</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0923-2958 |
ispartof | Celestial mechanics and dynamical astronomy, 2017-03, Vol.127 (3), p.331-341 |
issn | 0923-2958 1572-9478 |
language | eng |
recordid | cdi_proquest_miscellaneous_1884110552 |
source | SpringerNature Journals |
subjects | Aerospace Technology and Astronautics Astronomy Astrophysics Astrophysics and Astroparticles Boundaries Celestial mechanics Circularity Classical Mechanics Dynamical systems Dynamical Systems and Ergodic Theory Geophysics/Geodesy Mathematical analysis Mathematical models Numerical analysis Orbits Original Article Physics Physics and Astronomy Simplification |
title | On the covering of a Hill’s region by solutions in the restricted three-body problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20covering%20of%20a%20Hill%E2%80%99s%20region%20by%20solutions%20in%20the%20restricted%20three-body%20problem&rft.jtitle=Celestial%20mechanics%20and%20dynamical%20astronomy&rft.au=Kozlov,%20Valery&rft.date=2017-03-01&rft.volume=127&rft.issue=3&rft.spage=331&rft.epage=341&rft.pages=331-341&rft.issn=0923-2958&rft.eissn=1572-9478&rft_id=info:doi/10.1007/s10569-016-9729-5&rft_dat=%3Cproquest_cross%3E4313251441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1867561481&rft_id=info:pmid/&rfr_iscdi=true |